Microcystis is a well-known cyanobacterial genus frequently producing hepatotoxins named microcystins. Toxin production is encoded by microcystin genes (mcy). This study aims (i) to relate the mcy occurrence in individual colonies to the presence of microcystin, (ii) to assess whether morphological characteristics (morphospecies) are related to the occurrence of mcy genes, and (iii) to test whether there are geographical variations in morphospecies specificity and abundance of mcy genes. Individual colonies of nine different European countries were analysed by (1) morphological characteristics, (2) PCR to amplify a gene region within mcyA and mcyB indicative for microcystin biosynthesis, (3) matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) to detect microcystins. Almost one hundred percent of the colonies predicted to produce microcystins by PCR analysis were found to contain microcystins. A high similarity in microcystin variants in the different colonies selected from lakes across Europe was demonstrated. The different morphospecies varied in the frequency with which they contained mcy genes. Most colonies (>75%) of M. aeruginosa and M. botrys contained the mcy genes, whereas < or = 20% of the colonies identified as M. ichthyoblabe and M. viridis gave a PCR product of the mcy genes. No colonies of M. wesenbergii gave a PCR product of either mcy gene. In addition, a positive relationship was found between the size of the colony and the frequency of those containing the mcy genes. It is concluded that the analysis of morphospecies is indicative for microcystin production, although the quantitative analysis of microcystin concentrations in water remains indispensable for hazard control.

Download full-text PDF

Source
http://dx.doi.org/10.1078/0723202041748163DOI Listing

Publication Analysis

Top Keywords

mcy genes
24
individual colonies
12
mcy
9
genes
8
microcystin genes
8
genes individual
8
colonies
8
morphological characteristics
8
indicative microcystin
8
contained mcy
8

Similar Publications

Host metabolism balances microbial regulation of bile acid signalling.

Nature

January 2025

Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.

Metabolites derived from the intestinal microbiota, including bile acids (BA), extensively modulate vertebrate physiology, including development, metabolism, immune responses and cognitive function. However, to what extent host responses balance the physiological effects of microbiota-derived metabolites remains unclear. Here, using untargeted metabolomics of mouse tissues, we identified a family of BA-methylcysteamine (BA-MCY) conjugates that are abundant in the intestine and dependent on vanin 1 (VNN1), a pantetheinase highly expressed in intestinal tissues.

View Article and Find Full Text PDF

The Winam Gulf in the Kenyan region of Lake Victoria experiences prolific, year-round cyanobacterial harmful algal blooms (cyanoHABs) which pose threats to human, livestock, and ecosystem health. To our knowledge, there is limited molecular research on the gulf's cyanoHABs, and thus, the strategies employed for survival and proliferation by toxigenic cyanobacteria in this region remain largely unexplored. Here, we used metagenomics to analyze the Winam Gulf's cyanobacterial composition, function, and biosynthetic potential.

View Article and Find Full Text PDF

In this study, the toxigenic characteristics of 14 strains of Microcystis were analyzed, and single nucleotide polymorphism (SNP) and insertion/deletion (InDel) loci in microcystin synthetase (mcy) gene clusters were screened. Based on SNP and InDel loci associated with the toxigenic characteristics, primers and TaqMan or Cycling fluorescent probes were designed to develop duplex real-time fluorescent quantitative PCR (FQ-PCR) assays. After evaluating specificity and sensitivity, these assays were applied to detect the toxigenic Microcystis genotypes in a shrimp pond where Microcystis blooms occurred.

View Article and Find Full Text PDF

ABCG2-Expressing Clonal Repopulating Endothelial Cells Serve to Form and Maintain Blood Vessels.

Circulation

August 2024

Department of Pediatrics, Herman B. Wells Center for Pediatric Research (Y. Lin, C.-H.G., K.B., E.G., N.P., S.C., W.C.S., M. Yoshimoto, M.C.Y.), Indiana University School of Medicine, Indianapolis.

Background: Most organs are maintained lifelong by resident stem/progenitor cells. During development and regeneration, lineage-specific stem/progenitor cells can contribute to the growth or maintenance of different organs, whereas fully differentiated mature cells have less regenerative potential. However, it is unclear whether vascular endothelial cells (ECs) are also replenished by stem/progenitor cells with EC-repopulating potential residing in blood vessels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!