Hydrogen oxidation and electron transport were studied in the chlorobenzene-utilizing anaerobe Dehalococcoides sp. strain CBDB1. While Cu(2+) and Hg(2+) ions irreversibly inhibited hydrogenase activity in intact cells, Ni(2+) ions inhibited reversibly. About 80% of the initial hydrogenase activity was inactivated within 30 s when the cells were exposed to air. In contrast, hydrogenase was active at a redox potential of +10 mV when this redox potential was established anoxically with a redox indicator. Viologen dyes served both as electron acceptor for hydrogenase and electron donor for the dehalogenase. A menaquinone analogue, 2,3-dimethyl 1,4-naphthoquinone, served neither as electron acceptor for the hydrogenase nor as electron donor for the dehalogenase. In addition, the menaquinone antagonist 2-n-heptyl-4-hydroxyquinoline-N-oxide had no effect on dechlorination catalyzed by cell suspensions or isolated membranes with hydrogen as electron donor, lending further support to the notion that menaquinone is not involved in electron transport. The ionophores tetrachlorosalicylanilide and carbonylcyanide m-chlorophenylhydrazone did not inhibit dechlorination by cell suspensions, indicating that strain CBDB1 does not require reverse electron transport. The ATP-synthase inhibitor N,N'-dicyclohexylcarbodiimide inhibited the dechlorination reaction with cell suspensions; however, the latter effect was partially relieved by the addition of tetrachlorosalicylanilide. 1,2,3,4-tetrachlorobenzene strongly inhibited dechlorination of other chlorobenzenes by cell suspensions with hydrogen as electron donor, but it did not interfere with either hydrogenase or dehalogenase activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-004-0734-9 | DOI Listing |
Background: Although invasiveness is one of the major determinants of the poor glioblastoma (GBM) outcome, the mechanisms of GBM invasion are only partially understood. Among the intrinsic and environmental processes promoting cell-to-cell interaction processes, eventually driving GBM invasion, we focused on the pro-invasive role played by Extracellular Vesicles (EVs), a heterogeneous group of cell-released membranous structures containing various bioactive cargoes, which can be transferred from donor to recipient cells.
Methods: EVs isolated from patient-derived GBM cell lines and surgical aspirates were assessed for their pro-migratory competence by spheroid migration assays, calcium imaging, and PYK-2/FAK phosphorylation.
Front Public Health
January 2025
Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan.
Biodosimetry is crucial for assessing ionizing radiation exposure to guide medical responses. Electron spin resonance (ESR) spectroscopy using fingernails can be effectively used for both occupational and public dose assessments in radiological accidents because of their accessibility and ability to retain stable radiation-induced free radicals. However, despite two decades of research, challenges remain in achieving accurate fingernail dosimetry, mainly owing to the variation in ESR signals among individuals.
View Article and Find Full Text PDFRSC Adv
January 2025
Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences Tehran Iran
In addition to their advantages as promising methods for wastewater treatment, CWs exhibit poor performance in terms of N and P removal efficiency in the effluent of wastewater treatment plants. By focusing on this issue, we designed CWs integrated with a biochar-doped activated carbon cloth (ACC) electrode and alum sludge from water treatment plants as a substrate to achieve concomitant organic matter and nutrient removal efficiency. Compared with the use of one layer of alum sludge in CWs (CWs-C3) with ACC electrodes inserted in two layers, which uses one layer of alum sludge, a significant improvement in removal efficiency was achieved (96% for COD; 89% for TN; and 77% for TP).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, C11, 75185, Uppsala, Sweden.
The existence of transmissible amyloid fibril strains has long intrigued the scientific community. The strain theory originates from prion disorders, but here, we provide evidence of strains in systemic amyloidosis. Human AA amyloidosis manifests as two distinct clinical phenotypes called common AA and vascular AA.
View Article and Find Full Text PDFInorg Chem
January 2025
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
Hydrogen-bonded cocrystals have attracted considerable attention as they allow fine-tuning of properties through the choice of hydrogen-bond donors and acceptors. In this study, triphenylarsine oxide (PhAsO) is introduced as a strong hydrogen-bond acceptor molecule. Due to its higher Lewis basicity compared to triphenylphosphine oxide (PhPO), it acts as a strong hydrogen-bond acceptor, which is demonstrated in six new cocrystals with HO and -di(hydroperoxy)cycloalkanes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!