An active ferrocenyl triarylphosphine for palladium-catalyzed Suzuki-Miyaura cross-coupling of aryl halides.

Chem Commun (Camb)

Open Laboratory of Chirotechnology of the Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.

Published: October 2004

Pd-catalyzed Suzuki-Miyaura reaction of aryl chlorides was accomplished through the use of an active ferrocene-based triarylphosphine ligand. This air- and moisture-stable ligand was found to be effective for the cross-coupling of aryl halides at room temperature to 115 degrees C.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b407661cDOI Listing

Publication Analysis

Top Keywords

cross-coupling aryl
8
aryl halides
8
active ferrocenyl
4
ferrocenyl triarylphosphine
4
triarylphosphine palladium-catalyzed
4
palladium-catalyzed suzuki-miyaura
4
suzuki-miyaura cross-coupling
4
halides pd-catalyzed
4
pd-catalyzed suzuki-miyaura
4
suzuki-miyaura reaction
4

Similar Publications

Enantioselective reductive cross-couplings to forge C(sp)-C(sp) bonds by merging electrochemistry with nickel catalysis.

Nat Commun

January 2025

State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China.

Motivated by the inherent benefits of synergistically combining electrochemical methodologies with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of benzyl chlorides with aryl halides, yielding chiral 1,1-diaryl compounds with good to excellent enantioselectivity. This catalytic reaction can not only be applied to aryl chlorides/bromides, which are challenging to access by other means, but also to benzyl chlorides containing silicon groups. Additionally, the absence of a sacrificial anode lays a foundation for scalability.

View Article and Find Full Text PDF

An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.

View Article and Find Full Text PDF

The functional properties of tetraaryl compounds, M(aryl) (M = transition metal or group 14 element), are dictated not only by their common tetrahedral geometry but also by their central atom. The identity of this atom may serve to modulate the reactivity, electrochemical, magnetic, and optical behavior of the molecular species, or of extended materials built from appropriate tetraaryl building blocks, but this has not yet been systematically evaluated. Toward this goal, here we probe the influence of Os(IV), C, and Si central atoms on the spectroelectrochemical properties of a series of redox-active tetra(ferrocenylaryl) complexes.

View Article and Find Full Text PDF

Cross-coupling reactions are indispensable for the construction of complex molecular scaffolds. In this work, we developed a sustainable methodology for the cross-coupling reaction of arene thianthrenium salts with aryl boronic acids, which can be effectively realized under mechanochemical conditions. Liquid-assisted grinding (LAG) enabled fast and high-yielding synthesis of a range of biaryls via Pd/RuPhos-catalyzed cross-coupling.

View Article and Find Full Text PDF

Due to the presence of the pyridyl directing group, -aryl-2-aminopyridines can quickly form stable complexes with metals, leading to cyclization and functionalization reactions. A large number of N-heterocycles and nitrogen-based molecules can be easily constructed this direct and atom-economical cross-coupling strategy. In this review, we have highlighted the transformations of -aryl-2-aminopyridines in the presence of various transition metal catalysts, such as palladium, rhodium, iridium, ruthenium, cobalt and copper.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!