In sickle cell disease, intravascular sickling and attendant flow abnormalities underlie the chronic inflammation and vascular endothelial abnormalities. However, the relationship between sickling and vascular tone is not well understood. We hypothesized that sickling-induced vaso-occlusive events and attendant oxidative stress will affect microvascular regulatory mechanisms. In the present studies, we have examined whether microvascular abnormalities expressed in sickle transgenic-knockout Berkeley (BERK) mice (which express exclusively human alpha- and beta(S)-globins with <1% gamma-globin levels) are amenable to correction with increased levels of antisickling fetal hemoglobin (HbF). In BERK mice, sickling, increased oxidative stress, and hemolytic anemia are accompanied by vasodilation, compensatory increases in eNOS and COX-2, and attenuated vascular responses to NO-mediated vasoactive stimuli and norepinephrine. The hypotension and vasodilation (required for adequate oxygen delivery in the face of chronic anemia) are mediated by non-NO vasodilators (i.e., prostacyclin) as evidenced by induction of COX-2. In BERK mice, the resistance to NO-mediated vasodilators is associated with increased oxidative stress and hemolytic rate, and in BERK + gamma mice (expressing 20% HbF), an improved response to these stimuli is associated with reduced oxidative stress and hemolytic rate. Furthermore, BERK + gamma mice show normalization of vessel diameters, and eNOS and COX-2 expression. These results demonstrate a strong relationship between sickling and microvascular function in sickle cell disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC522244 | PMC |
http://dx.doi.org/10.1172/JCI21633 | DOI Listing |
Front Immunol
March 2023
Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States.
Acta Crystallogr D Biol Crystallogr
October 2013
Institute for Structural Biology and Drug Discovery, and the Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA.
A variant Hb ζ2β2(s) that is formed from sickle hemoglobin (Hb S; α2β2(s)) by exchanging adult α-globin with embryonic ζ-globin subunits shows promise as a therapeutic agent for sickle-cell disease (SCD). Hb ζ2β2(s) inhibits the polymerization of deoxygenated Hb S in vitro and reverses characteristic features of SCD in vivo in mouse models of the disorder. When compared with either Hb S or with normal human adult Hb A (α2β2), Hb ζ2β2(s) exhibits atypical properties that include a high oxygen affinity, reduced cooperativity, a weak Bohr effect and blunted 2,3-diphosphoglycerate allostery.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2013
Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
Chronic inflammation is a salient feature of sickle cell disease (SCD) and transgenic-knockout sickle (BERK) mice. Inflammation is implicated in the activation of hypoxia-inducible factor-1α (HIF-1α) under normoxic conditions. We hypothesize that, in SCD, inflammation coupled with nitric oxide (NO) depletion will induce expression of HIF-1α, a transcription factor with wide-ranging effects including activation of genes for vasoactive molecules.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
February 2010
Dept. of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
In sickle cell disease (SCD), the events originating from hemoglobin S polymerization and intravascular sickling lead to reperfusion injury, hemolysis, decreased nitric oxide (NO) bioavailability, and oxidative stress. Oxidative stress is implicated as a contributing factor to multiple organ damage in SCD. We hypothesize that inhibition of sickling by genetic manipulation to enhance antisickling fetal hemoglobin (HbF) expression will have an ameliorating effect on oxidative stress by decreasing intravascular sickling and hemolysis and enhancing NO bioavailability.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
July 2008
Dept. of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
In sickle cell disease, nitric oxide (NO) depletion by cell-free plasma hemoglobin and/or oxygen radicals is associated with arginine deficiency, impaired NO bioavailability, and chronic oxidative stress. In transgenic-knockout sickle (BERK) mice that express exclusively human alpha- and beta(S)-globins, reduced NO bioavailability is associated with induction of non-NO vasodilator enzyme, cyclooxygenase (COX)-2, and impaired NO-mediated vascular reactivity. We hypothesized that enhanced NO bioavailability in sickle mice will abate activity of non-NO vasodilators, improve vascular reactivity, decrease hemolysis, and reduce oxidative stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!