Prostate cancer is an important public health problem in the United States. Seven phytoestrogens found in common herbal products were screened for estrogen receptor binding and growth inhibition of androgen-insensitive (PC-3) and androgen-sensitive (LNCaP) human prostate tumor cells. In a competitive 3H-estradiol ligand binding assay using mouse uterine cytosol, 2.5 M quercetin, baicalein, genistein, epigallocatechin gallate (EGCG), and curcumin displaced > 85% of estradiol binding, whereas apigenin and resveratrol displaced > 40%. From growth inhibition studies in LNCaP cells, apigenin and curcumin were the most potent inhibitors of cell growth, and EGCG and baicalein were the least potent. In PC-3 cells, curcumin was the most potent inhibitor of cell growth, and EGCG was the least potent. In both cell lines, significant arrest of the cell cycle in S phase was induced by resveratrol and EGCG and in G2M phase by quercetin, baicalein, apigenin, genistein, and curcumin. Induction of apoptosis was induced by all of the 7 compounds in the 2 cell lines as shown by TUNEL and DNA fragmentation assays. Androgen responsiveness of the cell lines did not correlate with cellular response to the phytoestrogens. In conclusion, these 7 phytoestrogens, through different mechanisms, are effective inhibitors of prostate tumor cell growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1207/s15327914nc4902_12 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!