The capacity of yeast cells to produce reactive oxygen species (ROS), both as a response to manipulation of mitochondrial functions and to growth conditions, was estimated and compared with the viability of the cells. The chronological ageing of yeast cells (growth to late-stationary phase) was accompanied by increased ROS accumulation and a significantly higher loss of viability in the mutants with impaired mitochondrial functions than in the parental strain. Under these conditions, the ectopic expression of mammalian Bcl-x(L), which is an anti-apoptotic protein, allowed cells to survive longer in stationary phase. The protective effect of Bcl-x(L) was more prominent in respiratory-competent cells that contained defects in mitochondrial ADP/ATP translocation, suggesting a model for Bcl-x(L) regulation of chronological ageing at the mitochondria. Yeast can also be triggered into apoptosis-like cell death, at conditions leading to the depletion of the intramitochondrial ATP pool, as a consequence of the parallel inhibition of mitochondrial respiration and ADP/ATP translocation. If respiratory-deficient (rho(0)) cells were used, no correlation between the numbers of ROS-producing cells and the viability loss in the population was observed, indicating that ROS production may be an accompanying event. The protective effect of Bcl-x(L) against death of these cells suggests a mitochondrial mechanism which is different from the antioxidant activity of Bcl-x(L).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.femsyr.2004.06.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!