A method to estimate emission rates from industrial stacks based on neural networks.

Chemosphere

Departamento de Físico Química/INFIQC, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina.

Published: November 2004

This paper presents a technique based on artificial neural networks (ANN) to estimate pollutant rates of emission from industrial stacks, on the basis of pollutant concentrations measured on the ground. The ANN is trained on data generated by the ISCST3 model, widely accepted for evaluation of dispersion of primary pollutants as a part of an environmental impact study. Simulations using theoretical values and comparison with field data are done, obtaining good results in both cases at predicting emission rates. The application of this technique would allow the local environment authority to control emissions from industrial plants without need of performing direct measurements inside the plant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2004.07.045DOI Listing

Publication Analysis

Top Keywords

emission rates
8
industrial stacks
8
neural networks
8
method estimate
4
estimate emission
4
rates industrial
4
stacks based
4
based neural
4
networks paper
4
paper presents
4

Similar Publications

Bone is a common site for the metastasis of malignant tumors, and Single Photon Emission Computed Tomography (SPECT) is widely used to detect these metastases. Accurate delineation of metastatic bone lesions in SPECT images is essential for developing treatment plans. However, current clinical practices rely on manual delineation by physicians, which is prone to variability and subjective interpretation.

View Article and Find Full Text PDF

Impact of climate change and land management on nitrate pollution in the high plains aquifer.

J Environ Manage

January 2025

Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA. Electronic address:

High concentrations of nitrate in groundwater pose risks to human and environmental health. This study evaluates the potential impact of climate change, land use, and fertilizer application rates on groundwater nitrate levels in the High Plains Aquifer under four Shared Socioeconomic Pathway (SSP) scenarios. A random forest model, with predictors such as fertilizer application rates, cropland coverage, and climate variables from six Coupled Model Intercomparison Project models, is used to project future nitrate concentrations.

View Article and Find Full Text PDF

It is well understood that a significant shift away from fossil fuel based transportation is necessary to limit the impacts of the climate crisis. Electric micromobility modes, such as electric scooters and electric bikes, have the potential to offer a lower-emission alternative to journeys made with internal combustion engine vehicles, and such modes of transport are becoming increasingly commonplace on our streets. Although offering advantages such as reduced air pollution and greater personal mobility, the widespread approval and uptake of electric micromobility is not without its challenges.

View Article and Find Full Text PDF

Release of elements and phenolic and flavonoid compounds from herbs and spices into acacia honey during infusion.

J Food Sci Technol

January 2025

Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, Debrecen, 4032 Hungary.

Acacia honey was infused with basil, oregano, marjoram, dill, garlic or cinnamon at infusion rates of 0-5% by mass for a 6 months period. After removal of the infusates, macro and micro element concentrations were measured by Inductively Coupled Plasma Optical Emission Spectrometry. Total phenolic and flavonoid contents were determined spectroscopically.

View Article and Find Full Text PDF

This study investigates the effects of varying exhaust gas recirculation (EGR) rates and temperatures on the combustion and emissions characteristics of a compression ignition engine fueled with hydrotreated vegetable oil (HVO). Understanding these effects is essential for optimizing renewable fuel applications in compression ignition engines, contributing to cleaner combustion, and supporting sustainable transportation initiatives. The experiments revealed that increasing the EGR rate to 20% not only reduces NOx emissions by approximately 25% but also increases smoke by around 15%, highlighting a trade-off between NOx and particulate matter control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!