Measurement of pre- and post-synaptic proteins in cerebral cortex: effects of post-mortem delay.

J Neurosci Methods

Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (Care of the Elderly), University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK.

Published: October 2004

Assessments of synaptic density in human brain are often based on measurements of synaptic proteins. Little information is available on their post-mortem stability. We have investigated this by ELISAs of the pre-synaptic proteins syntaxin and synaptophysin, and the post-synaptic protein PSD-95, in rat and human cortex. The rat brains were cooled in situ from 37 to 20 or 4 degrees C over 3 h, and then kept at 20 or 4 degrees C for a further 24-72 h, to simulate post-mortem storage at room temperature or in a mortuary refrigerator. Synaptophysin and PSD-95 levels in rat cerebral cortex were not significantly decreased after 72 h of incubation at 20 degrees C. Syntaxin was stable for 24 h but decreased by 39-44% at 48-72 h. Storage at 4 degrees C resulted in a similar reduction of syntaxin levels over 72 h. In human brain tissue from 160 people aged 24-102 years, post-mortem delay had little effect on synaptic protein levels in superior temporal cortex, but was associated with a decline in PSD-95 and syntaxin in mid-frontal cortex after 24 h. The more robust stability of synaptophysin may be related to its multi-transmembrane structure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2004.04.020DOI Listing

Publication Analysis

Top Keywords

cerebral cortex
8
post-mortem delay
8
human brain
8
cortex
5
measurement pre-
4
pre- post-synaptic
4
post-synaptic proteins
4
proteins cerebral
4
cortex effects
4
post-mortem
4

Similar Publications

Chitinase 3-like protein 1 (CHI3L1) is emerging as a promising biomarker for assessing intracranial lesion burden and predicting prognosis in traumatic brain injury (TBI) patients. Following experimental TBI, Chi3l1 transcripts were detected in reactive astrocytes located within the pericontusional cortex. However, the cellular sources of CHI3L1 in response to hemorrhagic contusions in human brain remain unidentified.

View Article and Find Full Text PDF

Purpose: The impact of ventriculomegaly (VM) on cortical development and brain functionality has been extensively explored in existing literature. VM has been associated with higher risks of attention-deficit and hyperactivity disorders, as well as cognitive, language, and behavior deficits. Some studies have also shown a relationship between VM and cortical overgrowth, along with reduced cortical folding, both in fetuses and neonates.

View Article and Find Full Text PDF

Introduction: Type 2 diabetes mellitus (T2DM) is linked to abnormal brain structure and cognitive dysfunction. However, there is a lack of studies conducted to assess the impact of diabetes on cortical gyrification and cognition. The aim of this cross-sectional study was to assess the potential negative effects of glucose metabolism levels on cognition and cortical gyrification in T2DM.

View Article and Find Full Text PDF

Introduction: Patients with bipolar disorder (BD) demonstrate episodic memory deficits, which may be hippocampal-dependent and may be attenuated in lithium responders. Induced pluripotent stem cell-derived CA3 pyramidal cell-like neurons show significant hyperexcitability in lithium-responsive BD patients, while lithium nonresponders show marked variance in hyperexcitability. We hypothesize that this variable excitability will impair episodic memory recall, as assessed by cued retrieval (pattern completion) within a computational model of the hippocampal CA3.

View Article and Find Full Text PDF

The effects of estrogen depletion in female rats: differential influences on somato-motor and sensory cortices.

Biogerontology

January 2025

Department of Anatomy, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhongyang Rd., Hualien, 970374, Taiwan.

Aging women experience a significant decline of ovarian hormones, particularly estrogen, following menopause, and become susceptible to cognitive and psychomotor deficits. Although the effects of estrogen depletion had been documented in the prefrontal and somatosensory cortices, its impact on somatomotor cortex, a region crucial for motor and cognitive functions, remains unclear. To explore this, we ovariectomized young adult female rats and fed subsequently with phytoestrogen-free diet and studied the effects of estrogen depletion on the somato-sensory and motor cortices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!