Deer antler offers a unique opportunity to explore how nature solves the problem of mammalian appendage regeneration. Annual antler renewal is an example of epimorphic regeneration, which is known to take place through initial blastema formation. Detailed examination of the early process of antler regeneration, however, has thus far been lacking. Therefore, we conducted morphological observations on antler regeneration from naturally cast and artificially created pedicle/antler stumps. On the naturally cast pedicle stumps, early antler regeneration underwent four distinguishable stages (with the Chinese equivalent names): casting of previous hard antlers (oil lamp bowl), early wound healing (tiger eye), late wound healing and early regeneration (millstone), and formation of main beam and brown tine (small saddle). Overall, no cone-shaped regenerate, a common feature to blastema-based regeneration, was observed. Taken together with the examination on the sagittal plane of each regenerating stage sample, we found that there are considerable overlaps between late-stage wound healing and the establishment of posterior and anterior growth centers. Observation of antler regeneration from the artificially created stumps showed that the regeneration potential of antler remnants was significantly reduced compared with that of pedicle tissue. Interestingly, the distal portion of a pedicle stump had greater regeneration potential than the proximal region, although this differential potential may not be constitutive, but rather caused by whether or not pedicle antlerogenic tissue becomes closely associated with the enveloping skin at the cut plane. Antler formation could take place from the distal peripheral tissues of an antler/pedicle stump, without the obvious participation of the entire central bony portion. Overall, our morphological results do not support the notion that antler regeneration takes place through the initial formation of a blastema; rather, it may be a stem cell-based process.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmor.10273DOI Listing

Publication Analysis

Top Keywords

antler regeneration
24
regeneration
12
wound healing
12
antler
10
observation antler
8
place initial
8
naturally cast
8
artificially created
8
regeneration potential
8
morphological observation
4

Similar Publications

A Novel Deer Antler-Inspired Bone Graft Triggers Rapid Bone Regeneration.

Adv Mater

December 2024

Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China.

Adult mammals are unable to regenerate bulky bone tissues, making large bone defects clinically challenging. Deer antler represents an exception to this rule, exhibiting the fastest bony growth in mammals, offering a unique opportunity to explore novel strategies for rapid bone regeneration. Here, a bone graft exploiting the biochemical, biophysical, and structural characteristics of antlers is constructed.

View Article and Find Full Text PDF

Integrated Transcriptomic and Proteomic Analyses of Antler Growth and Ossification Mechanisms.

Int J Mol Sci

December 2024

State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

Antlers are the sole mammalian organs capable of continuous regeneration. This distinctive feature has evolved into various biomedical models. Research on mechanisms of antler growth, development, and ossification provides valuable insights for limb regeneration, cartilage-related diseases, and cancer mechanisms.

View Article and Find Full Text PDF

Background: Bone marrow mesenchymal stem cells (BMSC)-derived exosomes (Exos) are important in promoting bone and vascular regeneration. Antler blood (ALB) is a valuable traditional Chinese medicine with potent regenerative effects. However, there is still a lack of clarity regarding the relationship between ALB and BMSC-Exos.

View Article and Find Full Text PDF

PRRX1/miR-143-3p signaling regulates homeostasis of antler reserve mesenchymal cells.

Int J Biol Macromol

December 2024

Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130000, China. Electronic address:

The molecular regulation mechanisms for maintaining the homeostasis of mesenchymal stem cells still remains poorly defined. Antler reserve mesenchymal cells (RM cells) persist through the whole rapid antler growth stage as a reserved stem cell population capable of division and differentiation, that makes the RM cells a unique model in stem cell regulation and cancer mechanism studies. Herein, we sequenced and analyzed the extracellular vesicles (EVs) of RM cells in the growth center of antler, and identified a high expression level of miR-143-3p and its target genes IGF1R, TGFβ1, BMP2, etc.

View Article and Find Full Text PDF

Antlers are bony structures that undergo regular annual growth, mineralisation and casting phases, representing only mammalian organs capable of full regeneration. Myiasis is infestation of live vertebrates with dipterous larvae. We sampled mineralised antlers from a red deer spiker stag 2 months after velvet shedding, divided it into three segments and fixed in 10% neutral buffered formalin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!