Modified heterocyclic phenylalanine analogues designed as replacements for the P3-P4 region were synthesized and incorporated into renin inhibitors. These inhibitors were found to have significant activity versus human recombinant renin, as well as in vivo activity. The compounds proved to be very resistant to chymotrypsin degradation, as exemplified by compound 8, which remained greater than 60% intact after a 24-h exposure to chymotrypsin. In contrast, the Boc-Phe analogue was nearly completely degraded after 1 h. Compound 6 proved to be the most potent renin inhibitor with an IC50 = 8.9 nM. These stable cyclized phenylalanines should prove to be generally useful as a substitute for Boc-Phe in protease inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm00083a005DOI Listing

Publication Analysis

Top Keywords

modified heterocyclic
8
heterocyclic phenylalanine
8
phenylalanine derivatives
4
derivatives incorporation
4
incorporation potent
4
inhibitors
4
potent inhibitors
4
inhibitors human
4
renin
4
human renin
4

Similar Publications

The field of π-conjugated organic materials has seen significant advances in recent years. However, enhancing the functionality of well-established, mass-produced compounds remains a considerable challenge, despite being an intriguing strategy for designing high-value organic materials with low production costs. In this context, vat dyes, known for their wide range of colors and extensive use in the textile industry are particularly attractive.

View Article and Find Full Text PDF

Experimental and computational analysis of lipophilicity and plasma protein binding properties of potent tacrine based cholinesterase inhibitors.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Republic of Serbia. Electronic address:

The lipophilicity of thirteen tacrine/piperidine-4-carboxamide derivatives was assessed using reversed-phase thin-layer chromatography (RP-TLC) with MeOH and acetonitrile (ACN) as organic modifiers. Among the parameters evaluated, the R and C values obtained using MeOH were identified as the most reliable for characterizing the lipophilicity of the investigated compounds. The observed differences in lipophilicity among the derivatives resulted from a delicate interplay of substituent effects (hydrophobicity, polarity, steric hindrance, and electronic effects), positional influence, and characteristics of the organic modifier.

View Article and Find Full Text PDF

Metal powders are crucial precursors for manufacturing surfaces through thermal spraying, cold spraying, and 3D printing methods. However, surface oxidation of these precursors poses a challenge to the coherence of the metallic materials during manufacturing processes. Herein, we introduce a method for surface modification of copper powder with N-heterocyclic carbenes (NHCs) using mechanochemistry to mitigate surface oxidation.

View Article and Find Full Text PDF

Objective: Heterocyclic amines (HCAs) are mutagens and carcinogens primarily generated when cooking meat at high temperatures or until well-done, and their major metabolic pathway includes hepatic N-hydroxylation via CYP1A2 followed by O-acetylation via N-acetyltransferase 2 (NAT2). NAT2 expresses a well-defined genetic polymorphism in humans resulting in rapid and slow acetylators. Recent epidemiological studies reported significant associations between dietary HCA exposure and insulin resistance and type II diabetes.

View Article and Find Full Text PDF

Skeletal Editing through Cycloaddition and Subsequent Cycloreversion Reactions.

Acc Chem Res

January 2025

Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, 48149 Münster, Germany.

ConspectusSkeletal editing, which involves adding, deleting, or substituting single or multiple atoms within ring systems, has emerged as a transformative approach in modern synthetic chemistry. This innovative strategy addresses the ever-present demand for developing new drugs and advanced materials by enabling precise modifications of molecular frameworks without disrupting essential functional complexities. Ideally performed at late stages of synthesis, skeletal editing minimizes the need for the cost- and labor-intensive processes often associated with synthesis, thus accelerating the discovery and optimization of complex molecular architectures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!