Transcriptional control of SV40 T-antigen expression allows a complete reversion of immortalization.

Nucleic Acids Res

Department of Gene Regulation and Differentiation, GBF-German Research Center for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany.

Published: February 2005

Conditional proliferation of mouse embryo fibroblasts was achieved with a novel autoregulatory vector for Tet-dependent expression of the SV40 T-antigen. The majority of cell clones that were isolated under induced conditions showed strict regulation of cell growth. Status switches were found to be fully reversible and highly reproducible with respect to gene expression characteristics. A consequence of T-antigen expression is a significant deregulation of >400 genes. Deinduced cells turn to rest in G0/G1 phase and exhibit a senescent phenotype. The cells are not oncogenic and no evidence for transformation was found after several months of cultivation. Conditional immortalization allows diverse studies including those on cellular activities without the influence of the immortalizing gene(s), senescence as well as secondary effects from T-antigen expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC524297PMC
http://dx.doi.org/10.1093/nar/gkh887DOI Listing

Publication Analysis

Top Keywords

t-antigen expression
12
sv40 t-antigen
8
expression
5
transcriptional control
4
control sv40
4
t-antigen
4
expression allows
4
allows complete
4
complete reversion
4
reversion immortalization
4

Similar Publications

The Glycopeptide PV-PS A1 Immunogen Elicits Both CD4+ and CD8+ Responses.

Vaccines (Basel)

December 2024

Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA.

Background/objectives: The MHCII-dependent, CD4+ T-cell zwitterionic polysaccharide PS A1 has been investigated as a promising carrier for vaccine development because it can induce an MHCII-dependent CD4+ response towards a variety of tumor-associated carbohydrate antigens (TACAs). However, PS A1 cannot elicit cytotoxic T lymphocytes through MHCI, which may or may not hamper its potential clinical use in cancer, infectious and viral vaccine development. This paper addresses PS A1 MHCI independence through the introduction of an MHCI epitope, the poliovirus (PV) peptide, to establish an MHCI- and MHCII-dependent vaccine.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS), which is caused by the porcine reproductive and respiratory syndrome virus (PRRSV), has a significant impact on the global pork industry. It results in reproductive failure in sows and respiratory issues in pigs of all ages. Despite the availability of vaccines, controlling the PRRSV remains challenging, partly owing to the limitations of cell culture systems.

View Article and Find Full Text PDF

Downregulation of FcRn promotes ferroptosis in herpes simplex virus-1-induced lung injury.

Cell Mol Life Sci

January 2025

School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, China.

Article Synopsis
  • HSV-1 infection can lead to lung injury, and a study found that lower levels of FcRn (a protein) are linked to more severe lung damage caused by the virus.
  • The study revealed that HSV-1 increases the methylation of the FcRn gene, which reduces its expression by promoting DNMT3b, a protein that inhibits transcription through a specific region of the FcRn promoter.
  • Inhibiting ferroptosis (a type of cell death) with a drug helped reduce lung injury in cases affected by HSV-1, indicating that targeting FcRn might be a promising therapeutic approach.
View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide with a poor prognosis for survival. Risk factors include alcohol and tobacco abuse and infection with human papilloma virus (HPV). To enhance anti-tumor immune responses immunotherapeutic approaches are approved for recurrent metastatic disease but only approx.

View Article and Find Full Text PDF

Polyomavirus enhancer activator 3 (PEA3), an ETS transcription factor, has been documented to regulate the development and metastasis of human cancers. Nonetheless, a thorough analysis examining the relationship between the PEA3 subfamily members and tumour development, prognosis, and the tumour microenvironment (TME) across various cancer types has not yet been conducted. The expression profiles and prognostic significance of the PEA3 subfamily were evaluated using data from the GEO, TCGA, and PrognoScan databases, in conjunction with COX regression analyses and the Kaplan-Meier Plotter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!