Hypertension attenuates cell-to-cell communication in hamster retractor muscle feed arteries.

Am J Physiol Heart Circ Physiol

Department of Biological Sciences, Ohio University, Athens, Ohio, USA.

Published: February 2005

This study examined whether hypertension attenuated cell-to-cell communication in skeletal muscle resistance arteries. Briefly, arteries feeding the retractor muscle of normotensive and hypertensive hamsters were cannulated, pressurized, and superfused with a physiological saline solution. Cell-to-cell communication was functionally assessed by application of vasoactive stimuli (via micropipette) to a small portion of a feed artery while diameter at sites distal to the point of agent application was monitored. In keeping with past observations, discrete application of a smooth muscle depolarizing agent (phenylephrine or KCl) elicited a localized vasoconstriction that conducted poorly along feed arteries from normotensive hamsters. In contrast, acetylcholine, an agent known to hyperpolarize endothelial cells, elicited a vasodilation in normotensive feed arteries that conducted with little decay. Whereas smooth muscle depolarizing agents continued to elicit a localized response, conduction of endothelium-dependent vasodilation was attenuated in hypertensive hamsters. This decrease occurred in the absence of changes in vessel reactivity to intravascular pressure or to global application of phenylephrine, U-46619, or acetylcholine. We propose, on the basis of these physiological observations, quantitative mRNA measurements of connexins 37, 40, 43, and 45, and analysis of the literature, that an increase in endothelial-to-endothelial or smooth muscle-to-endothelial coupling resistance is likely responsible for hypertension-induced impairment in vascular communication. We hypothesize that this attenuation could contribute to the rise in total peripheral resistance characteristically observed in hypertension.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00729.2004DOI Listing

Publication Analysis

Top Keywords

cell-to-cell communication
12
feed arteries
12
retractor muscle
8
hypertensive hamsters
8
smooth muscle
8
muscle depolarizing
8
muscle
5
arteries
5
hypertension attenuates
4
attenuates cell-to-cell
4

Similar Publications

Painful diabetic neuropathy (PDN) is a challenging complication of diabetes with patients experiencing a painful and burning sensation in their extremities. Existing treatments provide limited relief without addressing the underlying mechanisms of the disease. PDN involves the gradual degeneration of nerve fibers in the skin.

View Article and Find Full Text PDF

Dense-core vesicles (DCVs) are found in various types of cells, such as neurons, pancreatic β-cells, and chromaffin cells. These vesicles release transmitters, peptides, and hormones to regulate diverse functions, such as the stress response, immune response, behavior, and blood glucose levels. In traditional electron microscopy after chemical fixation, it is often reported that the dense cores occupy a portion of the vesicle towards the center and are surrounded by a clear halo.

View Article and Find Full Text PDF

Purpose: Previous studies have reported divergent sexual responses to aging; however, specific variations in gene expression between aging males and females and their potential association with age-related retinal diseases remain unclear. This study collected data from public databases and developed a comprehensive comparison of retina between aging females and males.

Methods: Single-cell RNA (scRNA) and bulk RNA sequencing data of the aging retina from females and males in public databases were utilized for integrated analysis to investigate sex-biased expression in retina.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are a part of a cell-to-cell communication system of prokaryotic and eukaryotic organisms. Their ability to penetrate biological barriers and to transfer molecules between cells shows their potential as a novel class of drug delivery platform. However, because of the great heterogeneity of EVs and the complexity of biological matrices from which they are typically isolated, reliable quality control procedures need to be established to ensure their safety for medical use.

View Article and Find Full Text PDF

Intranasal delivery of extracellular vesicles: A promising new approach for treating neurological and respiratory disorders.

J Control Release

January 2025

Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile. Electronic address:

Background: Extracellular vesicles (EVs) are membrane vesicles secreted by all types of cells, including bacteria, animals, and plants. These vesicles contain proteins, nucleic acids, and lipids from their parent cells and can transfer these components between cells. EVs have attracted attention for their potential use in diagnosis and therapy due to their natural properties, such as low immunogenicity, high biocompatibility, and ability to cross the blood-brain barrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!