Waves of Ca2+-induced Ca2+ release occur in various cell types and are involved in the pathology of certain forms of cardiac arrhythmia. These arrhythmias include catecholaminergic polymorphic ventricular tachycardia (CPVT), certain cases of which are associated with mutations in the cardiac calsequestrin gene (CASQ2). To explore the mechanisms of Ca2+ wave generation and unravel the underlying causes of CPVT, we investigated the effects of adenoviral-mediated changes in CASQ2 protein levels on the properties of cytosolic and sarcoplasmic reticulum (SR) Ca2+ waves in permeabilized rat ventricular myocytes. The free [Ca2+] inside the sarcoplasmic reticulum ([Ca2+]SR) was monitored by fluo-5N entrapped into the SR, and cytosolic Ca2+ was imaged using fluo-3. Overexpression of CASQ2 resulted in significant increases in the amplitude of Ca2+ waves and interwave intervals, whereas reduced CASQ2 levels caused drastic reductions in the amplitude and period of Ca2+ waves. CASQ2 abundance had no impact on resting diastolic [Ca2+]SR or on the amplitude of the [Ca2+]SR depletion signal during the Ca2+ wave. However, the recovery dynamics of [Ca2+]SR following Ca2+ release were dramatically altered as the rate of [Ca2+]SR recovery increased approximately 3-fold in CASQ2-overexpressing myocytes and decreased to 30% of control in CASQ2-underexpressing myocytes. There was a direct linear relationship between Ca2+ wave period and the half-time of basal [Ca2+]SR recovery following Ca2+ release. Loading the SR with the low affinity exogenous Ca2+ buffer citrate exerted effects quantitatively similar to those observed on overexpressing CASQ2. We conclude that free intra-SR [Ca2+] is a critical determinant of cardiac Ca2+ wave generation. Our data indicate that reduced intra-SR Ca2+ binding activity promotes the generation of Ca2+ waves by accelerating the dynamics of attaining a threshold free [Ca2+]SR required for Ca2+ wave initiation, potentially accounting for arrhythmogenesis in CPVT linked to mutations in CASQ2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1665374PMC
http://dx.doi.org/10.1113/jphysiol.2004.073940DOI Listing

Publication Analysis

Top Keywords

ca2+ wave
20
ca2+ waves
16
ca2+
15
ca2+ release
12
wave generation
8
sarcoplasmic reticulum
8
[ca2+]sr recovery
8
casq2
7
[ca2+]sr
7
waves
6

Similar Publications

A bi-kinase module sensitizes and potentiates plant immune signaling.

Sci Adv

January 2025

Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany.

Systemic signaling is an essential hallmark of multicellular life. Pathogen encounter occurs locally but triggers organ-scale and organismic immune responses. In plants, elicitor perception provokes systemically expanding Ca and HO signals conferring immunity.

View Article and Find Full Text PDF

NADPH Oxidases: Redox Regulation of Cell Homeostasis & Disease.

Physiol Rev

January 2025

Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261.

The redox signaling network in mammals has garnered enormous interest and taken on major biological significance in recent years as the scope of NADPH oxidases (NOXs) as regulators of physiological signaling and cellular degeneration has grown exponentially. All NOX subtypes have in common the capacity to generate reactive oxygen species (ROS) superoxide anion (O) and/or hydrogen peroxide (HO). A baseline, normal level of ROS formation supports a wide range of processes under physiological conditions.

View Article and Find Full Text PDF

Cadmium is one of the most dangerous pollutants found in the environment, where it exists mainly due to human activities. High cadmium concentrations can cause serious problems, which is why the detection and determination of Cd is one of the most important tasks. Electroanalytical methods provide rapid and accurate results in the detection of cadmium in various solutions.

View Article and Find Full Text PDF

Acute Kidney Injury (AKI) is a significant medical condition characterized by the abrupt decline in kidney function.Low-intensity pulsed ultrasound (LIPUS), a non-invasive therapeutic technique employing low-intensity acoustic wave pulses, has shown promise in promoting tissue repair and regeneration. A novel LIPUS system was developed and evaluated in rat AKI models, focusing on its effects on glomerular filtration rate (GFR), blood urea nitrogen (BUN), serum creatinine (SCr), and the Notch1-Akt-eNOS signaling pathway.

View Article and Find Full Text PDF

Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!