The N-terminal domain (NTD) of NIP1/eIF3c interacts directly with eIF1 and eIF5 and indirectly through eIF5 with the eIF2-GTP-Met-tRNA(i)(Met) ternary complex (TC) to form the multifactor complex (MFC). We investigated the physiological importance of these interactions by mutating 16 segments spanning the NIP1-NTD. Mutations in multiple segments reduced the binding of eIF1 or eIF5 to the NIP1-NTD. Mutating a C-terminal segment of the NIP1-NTD increased utilization of UUG start codons (Sui(-) phenotype) and was lethal in cells expressing eIF5-G31R that is hyperactive in stimulating GTP hydrolysis by the TC at AUG codons. Both effects of this NIP1 mutation were suppressed by eIF1 overexpression, as was the Sui(-) phenotype conferred by eIF5-G31R. Mutations in two N-terminal segments of the NIP1-NTD suppressed the Sui(-) phenotypes produced by the eIF1-D83G and eIF5-G31R mutations. From these and other findings, we propose that the NIP1-NTD coordinates an interaction between eIF1 and eIF5 that inhibits GTP hydrolysis at non-AUG codons. Two NIP1-NTD mutations were found to derepress GCN4 translation in a manner suppressed by overexpressing the TC, indicating that MFC formation stimulates TC recruitment to 40S ribosomes. Thus, the NIP1-NTD is required for efficient assembly of preinitiation complexes and also regulates the selection of AUG start codons in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC522265PMC
http://dx.doi.org/10.1128/MCB.24.21.9437-9455.2004DOI Listing

Publication Analysis

Top Keywords

eif1 eif5
16
nip1-ntd mutations
8
start codons
8
sui- phenotype
8
gtp hydrolysis
8
eif5-g31r mutations
8
nip1-ntd
7
eif1
5
eif5
5
interactions eukaryotic
4

Similar Publications

In eukaryotic translation initiation, the 48S preinitiation complex (PIC) scans the 5' untranslated region of mRNAs to search for the cognate start codon (AUG) with assistance from various eukaryotic initiation factors (eIFs). Cognate start codon recognition is precise, rejecting near-cognate codons with a single base difference. However, the structural basis of discrimination of near-cognate start codons was not known.

View Article and Find Full Text PDF

Translation initiation defines the identity of a synthesized protein through selection of a translation start site on a messenger RNA. This process is essential to well-controlled protein synthesis, modulated by stress responses, and dysregulated in many human diseases. The eukaryotic initiation factors eIF1 and eIF5 interact with the initiator methionyl-tRNA on the 40S ribosomal subunit to coordinate start site selection.

View Article and Find Full Text PDF

Translation start site selection in eukaryotes is influenced by context nucleotides flanking the AUG codon and by levels of the eukaryotic translation initiation factors eIF1 and eIF5. In a search of mammalian genes, we identified five homeobox () gene paralogs initiated by AUG codons in conserved suboptimal context as well as 13 genes that contain evolutionarily conserved upstream open reading frames (uORFs) that initiate at AUG codons in poor sequence context. An analysis of published cap analysis of gene expression sequencing (CAGE-seq) data and generated CAGE-seq data for messenger RNAs (mRNAs) from mouse somites revealed that the 5' leaders of mRNAs of interest contain conserved uORFs, are generally much shorter than reported, and lack previously proposed internal ribosome entry site elements.

View Article and Find Full Text PDF

KRAS is among the most common oncogenic mutations in lung adenocarcinoma and a promising target for treatment by small-molecule inhibitors. KRAS oncogenic signaling is responsible for modulation of tumor microenvironment, with translation factors being among the most prominent deregulated targets. In the present study, we used TALENs to edit EGFR CL1-5 and A549 cells for integration of a Tet-inducible KRAS expression system.

View Article and Find Full Text PDF
Article Synopsis
  • The formation of the 43S pre-initiation complex (PIC) is crucial for canonical mRNA translation in eukaryotes, involving initiator Met-tRNA and several eukaryotic initiation factors (eIFs) bound to the small ribosomal subunit (40S).
  • Structural differences in the 40S ribosomal subunit of trypanosomatids, like Trypanosoma cruzi (the cause of Chagas disease), indicate variability in translation initiation compared to mammals.
  • The study reveals unique features of the 43S PIC structure, including a distinct eIF3 structure, interactions with rRNA expansion segments, and the role of a kinetoplastid-specific helicase, supported by biochemical assays and mass spect
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!