The N-terminal domain (NTD) of NIP1/eIF3c interacts directly with eIF1 and eIF5 and indirectly through eIF5 with the eIF2-GTP-Met-tRNA(i)(Met) ternary complex (TC) to form the multifactor complex (MFC). We investigated the physiological importance of these interactions by mutating 16 segments spanning the NIP1-NTD. Mutations in multiple segments reduced the binding of eIF1 or eIF5 to the NIP1-NTD. Mutating a C-terminal segment of the NIP1-NTD increased utilization of UUG start codons (Sui(-) phenotype) and was lethal in cells expressing eIF5-G31R that is hyperactive in stimulating GTP hydrolysis by the TC at AUG codons. Both effects of this NIP1 mutation were suppressed by eIF1 overexpression, as was the Sui(-) phenotype conferred by eIF5-G31R. Mutations in two N-terminal segments of the NIP1-NTD suppressed the Sui(-) phenotypes produced by the eIF1-D83G and eIF5-G31R mutations. From these and other findings, we propose that the NIP1-NTD coordinates an interaction between eIF1 and eIF5 that inhibits GTP hydrolysis at non-AUG codons. Two NIP1-NTD mutations were found to derepress GCN4 translation in a manner suppressed by overexpressing the TC, indicating that MFC formation stimulates TC recruitment to 40S ribosomes. Thus, the NIP1-NTD is required for efficient assembly of preinitiation complexes and also regulates the selection of AUG start codons in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC522265 | PMC |
http://dx.doi.org/10.1128/MCB.24.21.9437-9455.2004 | DOI Listing |
Nucleic Acids Res
October 2024
Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India.
In eukaryotic translation initiation, the 48S preinitiation complex (PIC) scans the 5' untranslated region of mRNAs to search for the cognate start codon (AUG) with assistance from various eukaryotic initiation factors (eIFs). Cognate start codon recognition is precise, rejecting near-cognate codons with a single base difference. However, the structural basis of discrimination of near-cognate start codons was not known.
View Article and Find Full Text PDFbioRxiv
July 2024
Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
Translation initiation defines the identity of a synthesized protein through selection of a translation start site on a messenger RNA. This process is essential to well-controlled protein synthesis, modulated by stress responses, and dysregulated in many human diseases. The eukaryotic initiation factors eIF1 and eIF5 interact with the initiator methionyl-tRNA on the 40S ribosomal subunit to coordinate start site selection.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2022
Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892;
Translation start site selection in eukaryotes is influenced by context nucleotides flanking the AUG codon and by levels of the eukaryotic translation initiation factors eIF1 and eIF5. In a search of mammalian genes, we identified five homeobox () gene paralogs initiated by AUG codons in conserved suboptimal context as well as 13 genes that contain evolutionarily conserved upstream open reading frames (uORFs) that initiate at AUG codons in poor sequence context. An analysis of published cap analysis of gene expression sequencing (CAGE-seq) data and generated CAGE-seq data for messenger RNAs (mRNAs) from mouse somites revealed that the 5' leaders of mRNAs of interest contain conserved uORFs, are generally much shorter than reported, and lack previously proposed internal ribosome entry site elements.
View Article and Find Full Text PDFInt J Mol Sci
February 2021
Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, (G.K.).
KRAS is among the most common oncogenic mutations in lung adenocarcinoma and a promising target for treatment by small-molecule inhibitors. KRAS oncogenic signaling is responsible for modulation of tumor microenvironment, with translation factors being among the most prominent deregulated targets. In the present study, we used TALENs to edit EGFR CL1-5 and A549 cells for integration of a Tet-inducible KRAS expression system.
View Article and Find Full Text PDFCell Rep
December 2020
INSERM U1212 (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!