Objective: A point mutation in human cardiac calsequestrin (CSQ-D307H) is responsible for a form of polymorphic ventricular tachycardia (PVT). When overexpressed in heart cells, the mutated CSQ leads to diminished Ca(2+) transients, consistent with defective regulation of intralumenal sarcoplasmic reticulum (SR) Ca(2+).
Methods: To analyze the D307H mutant and determine whether the D307H mutation results in loss of normal protein-protein interactions, we prepared recombinant human wild-type (WT) and D307H forms of CSQ in mammalian cells.
Results: Although we found the two proteins to undergo similar glycosylation and phosphorylation, we discovered that Ca(2+)-dependent binding of the D307H mutant to both triadin-1 and junctin was reduced by greater than 50% compared to WT. Reduced binding of the D307H mutant CSQ to target proteins was similar throughout a complete range of Ca(2+) concentrations. To investigate the mechanism of reduced Ca(2+)-dependent binding, Ca(2+)-dependent changes in intrinsic fluorescence emission for the two protein forms were compared. Intrinsic fluorescence of the D307H mutant was highly reduced, reflecting significant alteration in the tertiary protein structure. Moreover, the changes in fluorescence caused by increasing the Ca(2+) concentration were very significantly blunted, indicating that the Ca(2+)-dependent conformational change was virtually lost.
Conclusions: We conclude that the point mutation D307H leads to a profoundly altered conformation that no longer responds normally to Ca(2+) and fails to bind normally to triadin and junctin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cardiores.2004.09.009 | DOI Listing |
J Muscle Res Cell Motil
September 2020
Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.
Homozygous calsequestrin 2 (CASQ2) point mutations leads to catecholaminergic polymorphic ventricular tachycardia: a common pathogenetic feature appears to be the drastic reduction of mutant CASQ2 in spite of normal transcription. Comparative biochemical analysis of R33Q and D307H knock in mutant mice identifies different pathogenetic mechanisms for CASQ2 degradation and different molecular adaptive mechanisms. In particular, each CASQ2 point mutation evokes specific adaptive cellular and molecular processes in each of the four adaptive pathways investigated.
View Article and Find Full Text PDFBiochem Pharmacol
December 2013
Leviev Heart Center, Sheba Medical Center, Tel Hashomer and Sackler School of, Medicine, Tel Aviv University, Tel Aviv, Israel.
Humans and genetically engineered mice with recessively inherited CPVT develop arrhythmia which may arise due to malfunction or degradation of calsequestrin (CASQ2). We investigated the relation between protein level and arrhythmia severity in CASQ2(D307H/D307H) (D307H), compared to CASQ2(Δ/Δ) (KO) and wild type (WT) mice. CASQ2 expression and Ca²⁺ transients were recorded in cardiomyocytes from neonatal or adult mice.
View Article and Find Full Text PDFSudden cardiac death caused by ventricular arrhythmias is a disastrous event, especially when it occurs in young individuals. Among the five major arrhythmogenic disorders occurring in the absence of a structural heart disease is catecholaminergic polymorphic ventricular tachycardia (CPVT), which is a highly lethal form of inherited arrhythmias. Our study focuses on the autosomal recessive form of the disease caused by the missense mutation D307H in the cardiac calsequestrin gene, CASQ2.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2012
Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, USA.
The role of calsequestrin (CASQ2) in cardiac sarcoplasmic reticulum (SR) calcium (Ca(2+)) transport has gained significant attention since point mutations in CASQ2 were reported to cause ventricular arrhythmia. In the present study, we have critically evaluated the functional consequences of expressing the CASQ2(D307H) mutant protein in the CASQ2 null mouse. We recently reported that the mutant CASQ2(D307H) protein can be stably expressed in CASQ2 null hearts, and it targets appropriately to the junctional SR (Kalyanasundaram A, Bal NC, Franzini-Armstrong C, Knollmann BC, Periasamy M.
View Article and Find Full Text PDFBiochem J
April 2011
Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
CASQ (calsequestrin) is a Ca2+-buffering protein localized in the muscle SR (sarcoplasmic reticulum); however, it is unknown whether Ca2+ binding to CASQ2 is due to its location inside the SR rich in Ca2+ or due to its preference for Ca2+ over other ions. Therefore a major aim of the present study was to determine how CASQ2 selects Ca2+ over other metal ions by studying monomer folding and subsequent aggregation upon exposure to alkali (monovalent), alkaline earth (divalent) and transition (polyvalent) metals. We additionally investigated how CPVT (catecholaminergic polymorphic ventricular tachycardia) mutations affect CASQ2 structure and its molecular behaviour when exposed to different metal ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!