The accuracy of several theories for the thermodynamic properties of the Yukawa hard-sphere chain fluid are studied. In particular, we consider the polymer mean spherical approximation (PMSA), the dimer version of thermodynamic perturbation theory (TPTD), and the statistical associating fluid theory for potentials of variable attractive range (SAFT-VR). Since the original version of SAFT-VR for Yukawa fluids is restricted to the case of one-Yukawa tail, we have extended SAFT-VR to treat chain fluids with two-Yukawa tails. The predictions of these theories are compared with Monte Carlo (MC) simulation data for the pressure and phase behavior of the chain fluid of different length with one- and two-Yukawa tails. We find that overall the PMSA and TPTD give more accurate predictions than SAFT-VR, and that the PMSA is slightly more accurate than TPTD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.1798054 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!