Two types of anion states are shown to coexist in nanometer-scale polyacene cluster anions. Naphthalene and anthracene nanoclusters having a single excess electron were produced in the gas-phase. Photoelectron spectra of size-selected cluster anions containing 2 to 100 molecules revealed that rigid "crystal-like" cluster anions emerge, greater than approximately 2 nanometers in size, and coexist with the "disordered" cluster anion in which the surrounding neutral molecules are reorganizing around the charge core. These two anion states appear to be correlated to negative polaronic states formed in the corresponding crystals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.1809118 | DOI Listing |
Commun Chem
January 2025
Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
Photoinduced metal-to-ligand (or ligand-to-metal) charge-transfer (CT) states in metal complexes have been extensively studied toward the development of luminescent materials. However, previous studies have mainly focused on CT transitions between d- and π-orbitals. Herein, we report the demonstration of CT emission from 4f- to π-orbitals using a trivalent europium (Eu(III)) complex, supported by both experimental and theoretical analyses.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112-5650, USA.
Na-K-Cl cotransporters functions as an anion importers, regulating trans-epithelial chloride secretion, cell volume, and renal salt reabsorption. Loop diuretics, including furosemide, bumetanide, and torsemide, antagonize both NKCC1 and NKCC2, and are first-line medicines for the treatment of edema and hypertension. NKCC1 activation by the molecular crowding sensing WNK kinases is critical if cells are to combat shrinkage during hypertonic stress; however, how phosphorylation accelerates NKCC1 ion transport remains unclear.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
Copper is ubiquitous as a structural material, and as a reagent in (bio)chemical transformations. A vast number of chemical reactions rely on the near-inevitable preference of copper for positive oxidation states to make useful compounds. Here we show this electronic paradigm can be subverted in a stable compound with a copper-magnesium bond, which conforms to the formal oxidation state of Cu(-I).
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China.
Nanozymes play a pivotal role in mitigating excessive oxidative stress, however, determining their specific enzyme-mimicking activities for intracellular free radical scavenging is challenging due to endo-lysosomal entrapment. In this study, we employ a genetic engineering strategy to generate ionizable ferritin nanocages (iFTn), enabling their escape from endo-lysosomes and entry into the cytoplasm. Specifically, ionizable repeated Histidine-Histidine-Glutamic acid (9HE) sequences are genetically incorporated into the outer surface of human heavy chain FTn, followed by the assembly of various chain-like nanostructures via a two-armed polyethylene glycol (PEG).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America.
Municipal solid waste (MSW) landfills represent underexplored microbial ecosystems. Landfills contain variable amounts of antibiotic and construction and demolition (C&D) wastes, which have the potential to alter microbial metabolism due to biocidal or redox active components, and these effects are largely underexplored. To circumvent the challenge of MSW heterogeneity, we conducted a 65-day time series study on simulated MSW microcosms to assess microbiome changes using 16S rRNA sequencing in response to 1) Fe(OH)3 and 2) Na2SO4 to represent redox active components of C&D waste as well as 3) antibiotics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!