The extravasation of metastatic cells is regulated by molecular events involving the initial adhesion of tumor cells to the endothelium and subsequently the migration of the cells in the host connective tissue. The differences in metastatic ability could be attributed to properties intrinsic of the various primary tumor types. Thus, the clonal selection of neoplastic cells during cancer progression results in cells better equipped for survival and formation of colonies in secondary sites. A cell line (T84SF) exhibiting an altered phenotypic appearance was selected from a colon cancer cell line (T84) by repetitive plating on TNFalpha-activated human endothelial cells and subsequent selection for adherent cells. Cell growth, motility, chemoinvasive abilities, tyrosine phosphorylation signaling, and the metastasis formation in nude mice of the two cell lines was compared. T84SF cells displayed in vitro an higher proliferation rate and a more invasive behavior compared to the parental cells while formed in vivo a greater number of metastatic colonies in nude mice. As concerns the signaling underlying the phenotypes of the selected cells, we examined the general tyrosine phosphorylation levels in both cell lines. Our results indicate that T84SF have an increased basal tyrosine phosphorylation of several proteins among which src kinase was identified. Treatment of cells with a specific inhibitor of src activity caused a greater in vitro inhibition of proliferation and invasive properties of T84 parental cells with respect to T84SF cells and diminished metastasis formation in vivo. Altogether, these data provide evidences that this new cell line may be valuable for identifying molecular mechanisms involved in the metastatic progression of colon cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.20236DOI Listing

Publication Analysis

Top Keywords

cells
15
colon cancer
12
tyrosine phosphorylation
12
endothelial cells
8
metastasis formation
8
nude mice
8
cell lines
8
t84sf cells
8
parental cells
8
cell
6

Similar Publications

Chimeric Antigen Receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion.

View Article and Find Full Text PDF

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

A Comprehensive Atlas of AAV Tropism in the Mouse.

Mol Ther

January 2025

Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.

View Article and Find Full Text PDF

GITRL enhances cytotoxicity and persistence of CAR-T cells in cancer therapy.

Mol Ther

January 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China, 200241. Electronic address:

CAR T-cell therapy has achieved remarkable clinical success in treating hematological malignancies. However, its clinical efficacy in solid tumors is less satisfactory, partially due to poor in vivo expansion and limited persistence of CAR-T cells. Here, we demonstrated that the overexpression of glucocorticoid-induced tumor necrosis factor receptor-related protein ligand (GITRL) enhances the anti-tumor activity of CAR-T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!