The present study tested the hypothesis that separate neural substrates mediate cocaine relapse elicited by drug-associated contextual stimuli vs explicit conditioned stimuli (CSs) and cocaine. Specifically, we investigated the involvement of the dorsal hippocampus (DH), basolateral amygdala (BLA), and dorsomedial prefrontal cortex (dmPFC) in contextual reinstatement of cocaine-seeking behavior and the involvement of the DH in explicit CS- and cocaine-induced reinstatement. Rats were trained to self-administer cocaine in a distinct context or in the presence of CSs paired explicitly with cocaine infusions. Responding of context-trained rats was then extinguished in the previously cocaine-paired or an alternate context, whereas responding of explicit CS-trained rats was extinguished in the absence of the CSs. Subsequently, the target brain regions or anatomical control regions were functionally inactivated using tetrodotoxin (0 or 5 ng/side), and cocaine-seeking behavior (ie, nonreinforced responses) was assessed in the cocaine-paired context, in the alternate context, in the presence of the explicit CSs, or following cocaine priming (10 mg/kg, i.p.). DH inactivation abolished contextual, but failed to alter explicit CS- or cocaine-induced, reinstatement of cocaine-seeking behavior. BLA or dmPFC inactivation also abolished contextual reinstatement. Conversely, inactivation of the control brain regions failed to alter contextual reinstatement. In conclusion, the DH, BLA, and dmPFC play critical roles in contextual reinstatement. Previous findings suggest that the BLA is critical for explicit CS-induced, but not cocaine-primed, reinstatement and the dmPFC is critical for both explicit CS-induced and cocaine-primed reinstatement. Thus, distinct but partially overlapping neural substrates mediate context-induced, explicit CS-induced, and cocaine-primed reinstatement of extinguished cocaine-seeking behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.npp.1300579 | DOI Listing |
Neuron
December 2024
School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing 100084, P.R. China. Electronic address:
Recalling systems-consolidated neocortex-dependent remote memories re-engages the hippocampus in a process called systems reconsolidation. However, underlying mechanisms, particularly for the origin of the reinstated hippocampal memory engram, remain elusive. By developing a triple-event labeling tool and employing two-photon imaging, we trace hippocampal engram ensembles from memory acquisition to systems reconsolidation and find that remote recall recruits a new engram ensemble in the hippocampus for subsequent memory retrieval.
View Article and Find Full Text PDFNeurobiol Stress
November 2024
Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany.
J Exp Psychol Anim Learn Cogn
October 2024
Department of Psychology, State University of New York at Binghamton.
The expression of an association between a conditioned stimulus (CS) and an unconditioned stimulus (US) can be attenuated by presenting the CS by itself (i.e., extinction, Ext).
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2025
Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina (IBIMA Plataforma BIONAND), Spain. Electronic address:
Cocaine-related contextual cues are a recurrent source of craving and relapse. Extinction of cue-driven cocaine seeking remains a clinical challenge, and the search for adjuvants is ongoing. In this regard, combining physical and cognitive training is emerging as a promising strategy that has shown synergistic benefits on brain structure and function, including enhancement of adult hippocampal neurogenesis (AHN), which has been recently linked to reduced maintenance of maladaptive drug seeking.
View Article and Find Full Text PDFSci Adv
August 2024
Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada.
Memories of events are linked to the contexts in which they were encoded. This contextual linking ensures enhanced access to those memories that are most relevant to the context at hand, including specific associations that were previously learned in that context. This principle, referred to as encoding specificity, predicts that context-specific neural states should bias retrieval of particular associations over others, potentially allowing for the disambiguation of retrieval cues that may have multiple associations or meanings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!