Enzymatic transesterification of guanosine having low solubility against organic solvent was examined. For the transesterification between guanosine and divinyl adipate catalyzed by alkaline protease from Bacillus (Bioprase), DMSO was added to DMF to increase the solublility of the nucleoside, and the conversion rate of guanosine to the vinyl guanosine ester was less than 30%. To overcome the reversible inactivation of enzyme by hydrophilic organic solvents, the reaction was carried out with 10% (v/v) water. The transesterification reaction was effectively catalyzed in DMF/DMSO in the presence of water and the conversion rate increased ca. 70% after 7 d reaction. The result shows that the water effect of Bioprase would be a useful method for the synthesis of low solublility nucleoside esters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/B:BILE.0000044869.77542.0c | DOI Listing |
Food Chem
December 2024
Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, 230036, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan, 430062, China. Electronic address:
An applicable and highly efficient methodology for the preparation of medium- and long-chain triglycerides (MLCTs) via the enzymatic transesterification of coconut oil with long-chain fatty acid triglycerides, named camellia oil, olive oil, linseed oil, algal oil, and rapeseed oil, respectively, has been proposed. The novel system achieved equilibrium in 5 min, and the MLCT yield ranged from 78.7 to 83.
View Article and Find Full Text PDFChembiochem
December 2024
University of Lille, UMRtBioEcoAgro, PolytechLille Bd Langevin, 59655, Villeneuve d'Ascq, FRANCE.
The process to synthesize biodiesel is well-developed and optimized to overcome the disadvantages like the competition with agriculture using feedstock, and the problematics in the process. Oils from waste and enzymatic catalysis have proven to be good solutions to these problems. Lipases are currently the most commonly used enzymes in the transesterification of oils; nevertheless, enzymes have a high cost and must be immobilized to offer repetitive reuse.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K.
The catalytic competency of the ribosome in extant protein biosynthesis is thought to arise primarily from two sources: an ability to precisely juxtapose the termini of two key substrates─3'-aminoacyl and -acyl-aminoacyl tRNAs─and an ability to ease direct transpeptidation by their desolvation and encapsulation. In the absence of ribosomal, or enzymatic, protection, however, these activated alkyl esters undergo efficient hydrolysis, while significant entropic barriers serve to hamper their intermolecular cross-aminolysis in bulk water. Given that the spontaneous emergence of a catalyst of comparable size and sophistication to the ribosome in a prebiotic RNA world would appear implausible, it is thus natural to ask how appreciable peptide formation could have occurred with such substrates in bulk water without the aid of advanced ribozymatic catalysis.
View Article and Find Full Text PDFLangmuir
December 2024
Instituto de Engenharia e Desenvolvimento Sustentável - IEDS, Campus das Auroras, Universidade da Integração Internacional da Lusofonia Afro-Brasileira - UNILAB, Rua José Franco de Oliveira, s/n - Zona Rural, Redenção 62790-970, CE, Brazil.
Food Chem
February 2025
Université de Lorraine, Laboratoire Ingénierie des Biomolécules (LIBio), 2 av. de la Forêt d'Haye, TSA 40602, 54518 Vandoeuvre Cedex, France. Electronic address:
This study hypothesizes that the solvent-free alcoholysis of oil recovered from salmon heads using vanillyl alcohol (VA) and immobilized lipase B can efficiently produce esters with enhanced stability and antioxidant properties. The objective was to investigate the selectivity and resulting ester profile, which may provide nutritional and functional advantages compared to supplementing oil with vanillyl alcohol. After 24 h, nearly complete conversion of vanillyl alcohol was achieved, leading to the production of various esters reflective of the oil's original fatty acid composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!