Regulation of intestinal ontogeny: effect of glucocorticoids and luminal microbes on galactosyltransferase and trehalase induction in mice.

Glycobiology

Developmental Gastroenterology Laboratory, Combined Program in Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Charlestown, MA 02129, USA.

Published: March 2005

Intestinal maturation can be influenced by intrinsic factors (glucocorticoid hormones) and by extrinsic factors (resident microflora); their relative roles in ontogeny of mouse intestinal trehalase expression, a marker of general gut development, and of beta1,4-galactosyltransferase (beta GT), a marker of glycosyltransferase development, were investigated. In conventional (CONV) mice, beta GT and trehalase gene expression rapidly increased to adult levels by the fourth postnatal week. In germ-free (GF) mice, beta GT expression remained at initial low levels and was rapidly induced on reintroduction of luminal microbes of the adult gut but not of microbes characteristic of the suckling gut. Similar developmental patterns were observed for colonic galactosyl beta1,4-linked glycoconjugates, products of beta GT activity. These results indicate an essential role for microbes in the ontogeny of beta GT. In both CONV and GF mice, cartisone acetate (CA) precociously accelerated the ontogeny of beta GT and trehalase until maturation of the gut occurred (day 22). In the mature gut of CONV mice, both beta GT and trehalase are elevated and insensitive to CA; in GF mature mice, the expression of beta GT remains low, whereas the expression of trehalase was at mature levels, regardless of CA treatment. These changes in enzyme activity were accompanied by parallel changes in mRNA, implying transcriptional regulation. Thus both microbes and cortisone regulate gut ontogeny, but only suckling gut responds to CA, an intrinsic factor, whereas adult gut beta GT expression remains sensitive to microflora, an extrinsic factor. However, induction of the adult pattern of glycosyltransferase expression in mature gut requires colonization by microflora typical of adult gut, suggesting an essential role for intestinal colonization in the ontogeny of normal intestinal mucosal cell surface glycoconjugate receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1093/glycob/cwi004DOI Listing

Publication Analysis

Top Keywords

conv mice
12
mice beta
12
beta trehalase
12
adult gut
12
gut
10
beta
9
luminal microbes
8
beta expression
8
suckling gut
8
essential role
8

Similar Publications

Purpose: Proton FLASH has been investigated using cyclotron and synchrocyclotron beamlines but not synchrotron beamlines. We evaluated the impact of dose rate (ultra-high [UHDR] vs. conventional [CONV]) and beam configuration (shoot-through [ST] vs.

View Article and Find Full Text PDF

A ganglioside-based immune checkpoint enables senescent cells to evade immunosurveillance during aging.

Nat Aging

December 2024

Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France.

Although senescent cells can be eliminated by the immune system, they tend to accumulate with age in various tissues. Here we show that senescent cells can evade immune clearance by natural killer (NK) cells by upregulating the expression of the disialylated ganglioside GD3 at their surface. The increased level of GD3 expression on senescent cells that naturally occurs upon aging in liver, lung, kidney or bones leads to a strong suppression of NK-cell-mediated immunosurveillance.

View Article and Find Full Text PDF

Recently, ultra-high dose rate (> 40 Gy/s, uHDR; FLASH) radiation therapy (RT) has attracted interest, because the FLASH effect that is, while a cell-killing effect on cancer cells remains, the damage to normal tissue could be spared has been reported. This study aimed to compare the immune-related protein expression on cancer cells after γ-ray, conventionally used dose rate (Conv) carbon ion (C-ion), and uHDR C-ion. B16F10 murine melanoma and Pan02 murine pancreas cancer were irradiated with γ-ray at Osaka University and with C-ion at Osaka HIMAK.

View Article and Find Full Text PDF

Stepwise molecular specification of excitatory synapse diversity onto cerebellar Purkinje cells.

Nat Neurosci

December 2024

Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, France.

Brain function relies on the generation of a large variety of morphologically and functionally diverse, but specific, neuronal synapses. Here we show that, in mice, the initial formation of synapses on cerebellar Purkinje cells involves a presynaptic protein-CBLN1, a member of the C1q protein family-that is secreted by all types of excitatory inputs. The molecular program then evolves only in one of the Purkinje cell inputs, the inferior olivary neurons, with the additional expression of the presynaptic secreted proteins C1QL1, CRTAC1 and LGI2.

View Article and Find Full Text PDF

A Multifunctional Nanodrug Co-Delivering VEGF-siRNA and Dexamethasone for Synergistic Therapy in Ocular Neovascular Diseases.

Int J Nanomedicine

November 2024

Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People's Republic of China.

Introduction: Oxidant stress, abnormal angiogenesis, and inflammation are three key factors contributing to the development of ocular neovascular diseases (ONDs). This study aims to develop a multifunctional nanodrug, DEX@MPDA-Arg@Si (DMAS), which integrates mesoporous polydopamine, vascular endothelial growth factor (VEGF)-siRNA, and dexamethasone (DEX) to address these therapeutic targets.

Methods: Physicochemical properties of DMAS were measured using transmission electron microscopy and a nanoparticle size analyzer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!