The optimization of diamond films as valuable engineering materials for a wide variety of applications has required the development of robust methods for their characterization. Of the many methods used, Raman microscopy is perhaps the most valuable because it provides readily distinguishable signatures of each of the different forms of carbon (e.g. diamond, graphite, buckyballs). In addition it is non-destructive, requires little or no specimen preparation, is performed in air and can produce spatially resolved maps of the different forms of carbon within a specimen. This article begins by reviewing the strengths (and some of the pitfalls) of the Raman technique for the analysis of diamond and diamond films and surveys some of the latest developments (for example, surface-enhanced Raman and ultraviolet Raman spectroscopy) which hold the promise of providing a more profound understanding of the outstanding properties of these materials. The remainder of the article is devoted to the uses of Raman spectroscopy in diamond science and technology. Topics covered include using Raman spectroscopy to assess stress, crystalline perfection, phase purity, crystallite size, point defects and doping in diamond and diamond films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2004.1451 | DOI Listing |
Int J Oral Sci
January 2025
School of Cyber Science and Engineering, Sichuan University, Chengdu, China.
The presence of a positive deep surgical margin in tongue squamous cell carcinoma (TSCC) significantly elevates the risk of local recurrence. Therefore, a prompt and precise intraoperative assessment of margin status is imperative to ensure thorough tumor resection. In this study, we integrate Raman imaging technology with an artificial intelligence (AI) generative model, proposing an innovative approach for intraoperative margin status diagnosis.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
Food safety is one of the primary demands of modern society. Mycotoxins are toxic metabolites of food-contaminating fungi. Fungi enter the food chain by infecting crops and irreversibly contaminate them due to the structural stability of mycotoxins.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Faculty of Marine Resources and Environment, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan. Electronic address:
Microplastic pollution in marine environments poses significant environmental risks due to its widespread presence. Traditional micro-imaging measurement of microplastics often rely on post-cruise laboratory analyses. In this study, we explored the feasibility of onboard microplastic measurement using Raman spectroscopy, with a focus on polyethylene (PE).
View Article and Find Full Text PDFAnal Chim Acta
February 2025
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China. Electronic address:
Background: Plasmonic core-shell nanostructures with embedded internal markers used as Raman probes have attracted great attention in surface-enhanced Raman scattering (SERS) immunoassay for cancer biomarkers due to their excellent uniform enhancement. However, current core-shell nanostructures typically exhibit a spherical shape and are coated with a gold shell, resulting in constrained local field enhancement.
Results: In this work, we prepared a core-shell AuNR@BDT@Ag structure by depositing silver on the surface of Raman reporter-modified gold nanorods (AuNR).
Exp Eye Res
January 2025
Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China. Electronic address:
The study aimed to compare the effects of different types of excimer laser keratectomy on rabbit corneas and to identify the optimal disease model for corneal ectasia. Additionally, investigating the structural and molecular alterations in the novel disease model helped explore the mechanisms underlying biomechanical cues in corneal ectasia. 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!