Download full-text PDF |
Source |
---|
Light-driven biotransformations in recombinant cyanobacteria benefit from the atom-efficient regeneration of reaction equivalents like NADPH from water and light by oxygenic photosynthesis. The self-shading of photosynthetic cells throughout the reaction volume, along with the need for extended light paths, limits adequate light supply and significantly restricts the potential for upscaling. Here, we present a flat panel photobioreactor (1 cm optical path length) as a scalable system to provide efficient illumination at high cell densities.
View Article and Find Full Text PDFJ Microbiol Biotechnol
December 2024
School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China.
Gamma-aminobutyric acid (GABA), a non-proteinogenic amino acid, exhibits diverse physiological functions and finds extensive applications in food, medicine, and various industries. Glutamate decarboxylase (GAD) can effectively convert L-glutamic acid (L-Glu) or monosodium glutamate (MSG) into GABA. However, the low food-grade expression of GAD has hindered large-scale GABA production.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
Benzothiazole and benzoxazole heterocyclic ring-containing 1,4,5-trisubstituted-1,2,3-triazoles are well known for their wide range of applications in pharmaceutical and medicinal chemistry, but their high-yielding metal-free selective synthesis has always remained challenging as no comprehensive simple protocol has been outlined to date. Owing to their structural and medicinal importance, herein, we synthesized various benzothiazole and benzoxazole heterocyclic ring-containing 1,4,5-trisubstituted-1,2,3-triazoles in high to excellent yields with chemo-/regioselectivity from the library of benzothiazole/benzoxazole-ketones and aryl/alkyl-azides through an enolate-mediated organocatalytic azide-ketone [3 + 2]-cycloaddition under ambient conditions in a few hours. The commercial availability or quick synthesis of the starting materials and catalysts, a diverse substrate scope, chemo-/regioselectivity, quick synthesis of pharmaceutically active known compounds and their analogues, and numerous medicinal applications of functionalized benzothiazole/benzoxazole-triazoles are the key attractions of this metal-free organo-click reaction.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
Despite their widespread utilization in biomedical applications, these synthetic materials can be susceptible to microbial contamination, potentially compromising their functionality and increasing the risk of infection in patients. In this study, molybdenum (Mo), an essential metal in biological systems, was investigated as a Mo-based cold-sprayed coating on poly(dimethylsiloxane) (PDMS) for its potential use as biocompatible and antimicrobial surfaces for biomedical applications. Various cold-spray parameters were employed in the fabrication of Mo-embedded PDMS surfaces to alter the surface structure of the substrate, Mo loading density, and embedding layer thickness.
View Article and Find Full Text PDFFood Res Int
February 2025
Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark. Electronic address:
Xanthine oxidase (XO) and lactoperoxidase (LPO) are highly abundant enzymes in milk. Their substrates, xanthine and thiocyanate, are found in elevated amounts in infant saliva, leading to a proposed interaction between milk and saliva referred to as the XO-LPO system. This system is suggested to generate reactive oxygen and nitrogen species with potential antibacterial effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!