Synapsins are membrane-associated proteins that cover the surface of synaptic vesicles and are responsible for maintaining a pool of neurotransmitter-loaded vesicles for use during neuronal activity. We have used atomic force microscopy (AFM) to study the interaction of synapsin I with negatively charged lipid domains in phase-separated supported lipid bilayers prepared from mixtures of phosphatidylcholines (PCs) and phosphatidylserines (PSs). The results indicate a mixture of electrostatic binding to anionic PS-rich domains as well as some nonspecific binding to the PC phase. Interestingly, both protein binding and scanning with synapsin-coated AFM tips can be used to visualize charged lipid domains that cannot be detected by topography alone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.200400097 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!