A comparison of X-ray fluorescence and wet chemical analysis of air filter samples from a scrap lead smelting operation.

J Environ Monit

Exposure Assessment Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd., MS-3030, Morgantown, WV 26505, USA.

Published: October 2004

Personal and area air samples were taken at a scrap lead smelter operation in a bullet manufacturing facility. Samples were taken using the 37-mm styrene-acrylonitrile closed-face filter cassette (CFC, the current US standard device for lead sampling), the 37-mm GSP or "cone" sampler, the 25-mm Institute of Occupational Medicine (IOM) inhalable sampler, and the 25-mm Button sampler (developed at the University of Cincinnati). Polyvinylchloride filters were used for sampling. The filters were pre- and post-weighed, and analyzed for lead content using a field-portable X-ray fluorescence (XRF) analyzer. The filters were then extracted with dilute nitric acid in an ultrasonic extraction bath and the solutions were analyzed by inductively coupled plasma optical emission spectroscopy. The 25-mm filters were analyzed using a single XRF reading, while three readings on different parts of the filter were taken from the 37-mm filters. The single reading from the 25-mm filters was adjusted for the nominal area of the filter to obtain the mass loading, while the three readings from the 37-mm filters were inserted into two different algorithms for calculating the mass loadings, and the algorithms were compared. The IOM sampler was designed for material collected in the body of the sampler to be part of the collected sample as well as that on the filter. Therefore, the IOM sampler cassettes were rinsed separately to determine if wall-loss corrections were necessary. All four samplers gave very good correlations between the two analytical methods above the limit of detection of the XRF procedure. The limit of detection for the 25-mm filters (5 microg) was lower than for the 37-mm filters (10 microg). The percentage of XRF results that were within 25% of the corresponding ICP results was evaluated. In addition, the bias from linear regression was estimated. Linear regression for the Button sampler and the IOM sampler using single readings and the GSP using all tested techniques for total filter loading gave acceptable XRF readings at loadings equivalent to sampling at the OSHA 8-hour Action Level and Permissible Exposure Limit. However, the CFC only had acceptable results when the center reading corrected for filter area was used, which was surprising, and may be a result of a limited data set. In addition to linear regression, simple estimation of bias indicated reasonable agreements between XRF and ICP results for single XRF readings on the Button sampler filters, (82% of the individual results within criterion), and on the IOM sampler filters (77% or 61%--see text), and on the GSP sampler filters using the OSHA algorithm (78%). As a result of this pilot project, all three samplers were considered suitable for inclusion in further field research studies.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b405023cDOI Listing

Publication Analysis

Top Keywords

iom sampler
16
button sampler
12
filters
12
25-mm filters
12
37-mm filters
12
linear regression
12
sampler filters
12
sampler
11
x-ray fluorescence
8
samples scrap
8

Similar Publications

Exposure assessment to fine and ultrafine particulate matter during welding activity in the maintenance shop of a steelmaking factory.

Heliyon

December 2024

Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121, Brescia, Italy.

Unlabelled: Welding fumes are a main source of occupational exposure to particulate matter (PM), besides gases and ultraviolet radiations, that involves millions of operators worldwide and is related to several health effects, including lung cancer. Our study aims to evaluate the exposure to fine and ultrafine airborne particulate in welding operators working in a steel making factory.In October 2019, air monitoring was performed for four days in five different welding scenarios and in the external area of a steelmaking factory to assess the exposure to airborne particles, ultrafine (UFP) particulate and inhalable fraction, during welding activities.

View Article and Find Full Text PDF

Personal inhalable paper dust exposure and potential determinants among paper industry workers in Ethiopia.

Int Arch Occup Environ Health

November 2024

Occupational and Environmental Medicine, Department of Global Public Health and Primary Care, University of Bergen, Bergen, 5020, Norway.

Purpose: Excessive paper dust during paper production may harm the workers' respiratory health. We wanted to assess the inhalable paper dust levels and its determinants among paper industry workers.

Methods: A study was conducted in Ethiopia to assess the level of personal inhalable paper dust exposure among four paper mills.

View Article and Find Full Text PDF

We evaluated GaAs nanoparticle-concentrations in the air and on skin and surfaces in a research facility that produces thin films, and to monitored As in the urine of exposed worker. The survey was over a working week using a multi-level approach. Airborne personal monitoring was implemented using a miniature diffusion size classifier (DiSCMini) and IOM sampler.

View Article and Find Full Text PDF

Exposure to flour dust remains one of the leading causes of occupational asthma in Great Britain (GB). The average annual incidence rate per 100,000 bakers and flour confectioners in GB was 47.8 for the 3 yr period 2017 to 2019 compared with 0.

View Article and Find Full Text PDF

Welding fume is a common exposure in occupational settings. Gravimetric analysis for total particulate matter is common; however, the cost of laboratory analyses limits the availability of quantitative exposure assessment for welding fume metal constituents in occupational settings. We investigated whether a field portable X-ray fluorescence spectrometer (FP-XRF) could provide accurate estimates of personal exposures to metals common in welding fume (chromium, copper, manganese, nickel, vanadium, and zinc).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!