Background: Nonspecific lipid transfer proteins (nsLTPs) have been identified as major fruit allergens in patients from the Mediterranean area. Sensitization to nsLTPs is accompanied by severe reactions, possibly because of specific biophysical and biochemical properties of this allergen family.

Objective: To assess the protein stability and allergenic potency of nsLTP from fruits in comparison with birch pollen-related allergens from the same allergenic source.

Methods: Stability of natural and recombinant cherry allergens Pru av 3 (nsLTP), Pru av 1 (Bet v 1 homologue), and Pru av 4 (profilin) to pepsin digestion and to thermal processing and stability of allergens in skin prick test reagents was investigated by immunoblotting and/or circular dichroism spectroscopy. Moreover, allergenicity of processed and fresh fruits in regard to Pru av 1 and Pru av 3 was analyzed by histamine release assays.

Results: Lipid transfer proteins showed the highest resistance to digestion by pepsin (rPru av 3 > rPru av 1 > rPru av 4). Immunologically active Pru av 3 was detectable after 2 hours of digestion by pepsin, whereas IgE reactivity of Pru av 1 and Pru av 4 was abolished within less than 60 minutes. In contrast with Pru av 1, IgE reactivity to nsLTPs was not diminished in thermally processed fruits, and secondary structures of purified Pru av 3 were more resistant to heating. Moreover, nsLTPs were stable components in skin prick test reagents. Histamine release assays confirmed the strong allergenicity of nsLTPs, which was not affected by protease treatment or thermal processing of fruits.

Conclusion: In contrast with birch pollen-related allergens, nsLTPs are highly stable to pepsin treatment and thermal processing and show higher allergenic potency. Therefore, nsLTPs have the potential to act as true food allergens, probably eliciting severe systemic reactions by reaching the intestinal mucosa in an intact and fully active form.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2004.06.017DOI Listing

Publication Analysis

Top Keywords

thermal processing
16
lipid transfer
12
pru
11
strong allergenicity
8
transfer proteins
8
allergenic potency
8
birch pollen-related
8
pollen-related allergens
8
skin prick
8
prick test
8

Similar Publications

Ceramic aerogels are promising high-temperature thermal insulation materials due to their outstanding thermal stability and oxidation resistance. However, restricted by nanoparticle-assembled network structures, conventional ceramic aerogels commonly suffer from inherent brittleness, volume shrinkage, and structural collapse at high temperatures. Here, to overcome such obstacles, 3D ultralight and highly porous carbon tube foams (CTFs) were designed and synthesized as the carbonaceous precursors, where melamine foams were used as the sacrificial templates to form the hollow and thin-wall network structures in the CTFs (density: ∼4.

View Article and Find Full Text PDF

Range and accuracy of in-plane anisotropic thermal conductivity measurement using the laser-based Ångstrom method.

Rev Sci Instrum

January 2025

Birck Nanotechnology Center and the School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.

High heat fluxes in electronic devices must be effectively dissipated to prevent local hotspots, which are critical for long-term device reliability. In particular, advanced semiconductor packaging trends toward thin form factor products increase the need for understanding and improving in-plane conduction heat spreading in anisotropic materials. The 2D laser-based Ångstrom method, an extension of traditional Ångstrom and lock-in thermography techniques, measures in-plane thermal properties of anisotropic sheet-like materials.

View Article and Find Full Text PDF

From molecular dynamics (MD) simulations of melt-quenching and thermal aging procedures in pure Ag, Cu, Ag-Cu binary alloys, and Cu-Zr binary alloys, we have identified two distinct amorphous phases for a metastable undercooled liquid: the homogeneous L-phase with low shear rigidity and the heterogenous G-phase with much higher shear rigidity and a heterogeneity length scale Λ. Here, we examine two-phase equilibration studies showing that the G-phase melts to form the L-phase above ~1,000 K, which then transforms to form the crystal (X) phase; however, below the melting point of the G-Phase (~990 K), the X- and G-phases do not transform into each other. We suggest the presence of a G-phase is likely responsible for embrittlement often observed in metallic glasses.

View Article and Find Full Text PDF

Newly identified SpoVAF/FigP complex: the role in spore germination at moderate high pressure and influencing factors.

Appl Environ Microbiol

January 2025

College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China.

Unlabelled: The SpoVAF/FigP complex, a newly identified dormant spore ion channel, has been shown to amplify the response of germinant receptors (GRs) to nutrient germinants. However, its contribution to high-pressure-induced germination remains unexplored. In this study, we discovered that the 5AF/FigP complex played an important role in the GR-dependent germination of spores under moderate high pressure (MHP) by facilitating the release of ions, such as potassium (K), a mechanism in parallel with its role in nutrient-induced germination.

View Article and Find Full Text PDF

Thermal Titration Molecular Dynamics: The Revenge of the Fragments.

J Chem Inf Model

January 2025

Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova 35131, Italy.

During the last 20 years, the fragment-based drug discovery approach gained popularity in both industrial and academic settings due to its efficient exploration of the chemical space. This bottom-up approach relies on identifying high-efficiency small ligands (fragments) that bind to a target binding site and then rationally evolve them into mature druglike compounds. To achieve such a task, researchers rely on accurate information about the ligand binding mode, usually obtained through experimental techniques, such as X-ray crystallography or computer simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!