Assays to detect esterases associated with resistance to organophosphorus and pyrethroid insecticides in larvae of H. virescens were developed and evaluated. Cross-resistance to a variety of insecticides was measured in strains resulting from selection with either profenofos (OP-R) or cypermethrin (PYR-R), and resistance in both strains appeared to have a metabolic component. Esters were synthesized that coupled 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, the acid moiety of some pyrethroid insecticides, with groups (e.g., p-nitrophenyl-) that could be detected spectrophotometrically following hydrolysis of the resulting esters. Activities toward these pyrethroid esters were significantly higher in both resistant strains than those in a susceptible reference strain. In addition, all pyrethroid esters significantly increased the toxicity of cypermethrin in bioassays with larvae from both PYR-R and OP-R strains. The biological and biochemical activities of these compounds are compared with those with more conventional esterase substrates and insecticide synergists, and the utility of pyrethroid esters as components of rapid assays for detecting esterases associated with insecticide resistance is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf0493472 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!