Use of natural and synthetic aluminosilicates in decontamination of feed contaminated by fungi and micotoxins.

Pol J Vet Sci

Department of Biology and Animal Production Agricultural Academy, Chelmońskiego 38c, 51-630 Wrocław, Poland.

Published: November 2004

The contamination of feed with micotoxin has been a serious problem in animal nutrition. Many existing methods of decontamination are not satisfying due to the toxicological safety and health quality of the fodder materials. It stimulates the scientists to search for the new methods. The use of sorbents in the form of natural and synthetic aluminosilicates is a promising direction. The efficacy of aluminosilicates towards aflatoxins has been proved. However, their influence on other micotoxins is not that obvious. According to the last investigations, the use of aluminosilicates in nutrition does not cause any side effects and widespread pathological effects are observed only when dosage is incorrect. Regarding the analyses that were published, it can be supposed that the addition of several different aluminosilicates is a sufficient protection against mycotoxicoses.

Download full-text PDF

Source

Publication Analysis

Top Keywords

natural synthetic
8
synthetic aluminosilicates
8
aluminosilicates
5
aluminosilicates decontamination
4
decontamination feed
4
feed contaminated
4
contaminated fungi
4
fungi micotoxins
4
micotoxins contamination
4
contamination feed
4

Similar Publications

Although biocatalysis offers complementary or alternative approaches to traditional synthetic methods, the limited range of available enzymatic reactions currently poses challenges in synthesizing a diverse array of desired compounds. Consequently, there is a significant demand for developing novel biocatalytic processes to enable reactions that were previously unattainable. Herein, we report the discovery and subsequent protein engineering of a unique halohydrin dehalogenase to develop a biocatalytic platform for enantioselective formation and ring-opening of oxetanes.

View Article and Find Full Text PDF

Besides the important pathogenic mechanisms of melanoma, including BRAF-driven and immunosuppressive microenvironment, genomic instability and abnormal DNA double-strand breaks (DSB) repair are significant driving forces for its occurrence and development. This suggests investigating novel therapeutic strategies from the synthetic lethality perspective. Poly (ADP-ribose) polymerase 4 (PARP4) is known to be a member of the PARP protein family.

View Article and Find Full Text PDF

[FeFe]-hydrogenases are enzymes that catalyze the redox interconversion of H and H using a six-iron active site, known as the H-cluster, which consists of a structurally unique [2Fe] subcluster linked to a [4Fe-4S] subcluster. A set of enzymes, HydG, HydE, and HydF, are responsible for the biosynthesis of the [2Fe] subcluster. Among them, it is well established that HydG cleaves tyrosine into CO and CN and forms a mononuclear [Fe(II)(Cys)(CO)(CN)] complex.

View Article and Find Full Text PDF

The pathophysiological relationship between wound healing impairment and diabetes is an intricate process. Burn injury among diabetes patients leads to neurological, vascular, and immunological abnormalities along with impaired activities of cell proliferation, collagen production, growth factors, and cytokine activities with huge bacterial infestation. In our study, we aimed to achieve a burn wound dressing material with the help of electrospun Chitosan/Polyethylene oxide/Rosmarinic acid (CS/PEO/RA) nanofibers.

View Article and Find Full Text PDF

Study of antiplasmodial activity, toxicity, pharmacokinetic profiles of n-methyl-isatin (CHISACN) derivative.

Exp Parasitol

January 2025

Post-graduate Program in Studies in Natural Products and Synthetic Bioactive, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Toxicological Tests, Federal University of Paraíba, João Pessoa, PB, Brazil; Post-graduate Program in Studies in Development and Technological Innovation in Medicines, Federal University of Paraíba, João Pessoa, PB, Brazil.

One of the main factors that have made it difficult to control malaria is the large number of parasites that are resistant to the usual antimalarial drugs. Therefore, the development of new drugs that are more effective and with low toxicity for humans is necessary. In this work, we evaluated the adduct 2-(3-hydroxy-1-methyl-2-oxoindolin-3-yl) acrylonitrile, also called CHISACN, as a potential antimalarial through in vitro studies, and evaluated its effects in silico and in vivo toxicology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!