The response characteristics of an aquatic biomonitor that detects toxicity by monitoring changes in bluegill (Lepomis macrochirus Rafinesque) ventilatory and movement patterns were evaluated in single chemical laboratory studies at concentrations near the 96-h LC(50) concentration and at the EILATox-Oregon Workshop in sequential tests of multiple unknown samples. Baseline data collected prior to exposure allows each fish to serve as its own control. When at least 70% of exposed fish exhibit ventilatory or movement parameters significantly different from baseline observations, a group alarm is declared. In the laboratory studies, the aquatic biomonitor responded to the majority of chemicals at the 96-h lc(50) within an hour or less, although substantially higher response times were found for malathion and pentachlorophenol. Workshop tests of single chemical concentrations presented as blind samples were consistent with the laboratory test results. There were no alarms under control conditions in any test. Although data are limited, the aquatic biomonitor appears to respond more rapidly to chemicals causing membrane irritation, narcosis or polar narcosis than to acetylcholinesterase inhibitors or oxidative phosphorylation uncouplers. All four monitored parameters (ventilatory rate, cough rate, ventilatory depth and movement) contributed to identification of first alarms at acutely toxic levels. Understanding these response patterns can be useful in data interpretation for biomonitor applications such as surface water monitoring for watershed protection, wastewater treatment plant effluent monitoring or source water monitoring for drinking water protection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jat.1028 | DOI Listing |
Int J Mol Sci
January 2025
Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile.
Over recent decades, Northern Patagonia in Chile has seen significant growth in agriculture, livestock, forestry, and aquaculture, disrupting lake ecosystems and threatening native species. These environmental changes offer a chance to explore how anthropization impacts zooplankton communities from a molecular-ecological perspective. This study assessed the anthropogenic impact on by comparing its proteomes from two lakes: Llanquihue (anthropized) and Icalma (oligotrophic).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
The rising concentration of microplastics (MPs) in aquatic environments poses increasing ecological risks, yet their impacts on biological communities remain largely unrevealed. This study investigated how aminopolystyrene microplastics (PS-NH) affect physiology and gene expression using the freshwater alga sp. as the test species.
View Article and Find Full Text PDFEcotoxicology
January 2025
Laboratory of Ecology and Conservation, Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta, Indonesia.
Many contaminants from scattered sources constantly endanger streams that flow through heavily inhabited areas, commercial districts, and industrial hubs. The responses of transplanted mussels in streams in active biomonitoring programs will reflect the dynamics of environmental stream conditions. This study evaluated the untargeted metabolomic and proteomic responses and free radical scavenging activities of transplanted mussels Sinanodonta woodiana in the Winongo Stream at three stations (S1, S2, S3) representing different pollution levels: low (S1), high (S2), and moderate (S3).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, University of Bergen, Bergen, Norway.
Sponges are key ecosystem engineers that shape, structure and enhance the biodiversity of marine benthic communities globally. Sponge aggregations and reefs are recognized as vulnerable marine ecosystems (or VMEs) due to their susceptibility to damage from bottom-contact fishing gears. Ensuring their long-term sustainability, preservation, and ecosystem functions requires the implementation of sound scientific conservation tools.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Life Sciences, Kathmandu University, Dhulikhel, Nepal.
The extent of alien taxa impacts on river ecosystem health is unclear, but their frequency continues to rise. We investigated 1) the prevalence of including alien taxa in common bioindicators used in river bioassessment, 2) the effect of alien taxa on the richness and abundance of natives, and 3) whether including alien taxa in bioassessment tools increased their sensitivity to river degradation. In the 17 countries analyzed fish represented the greatest number of alien species (1726), followed by macrophytes (925), macroinvertebrates (556), and diatoms (7).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!