The effect of amount of plasticizer di(2-ethylhexyl) phthalate (DEHP) amount on the amount of residual monomer vinyl chloride (VC) was determined in samples of plasticised polyvinyl chloride (PVC) with different concentration of plasticiser (22.32-33.05%), before and after sterilisation by a titrimetric method. The titrimetric method was used to determine the VC concentration in a KMnO4 solution where the samples were kept immersed under the same conditions for 2 h. The influence of PVC film extracts with different amounts of DEHP on mouse fibroblast cells L-929 in a culture medium was evaluated by using quantitative tests: the amount of cells (protein determination), viability (MTT test) and proliferation (incorporation of bromodeoxyuridine (BrDU). The amount of vinyl chloride before and after heat sterilisation at 120 degrees C for 30 min was found to be almost the same for all samples and without any dependence on the concentration of DEHP. The extracts of the PVC films which were tested have no toxic effect on cells in a culture medium.

Download full-text PDF

Source
http://dx.doi.org/10.1023/B:JMSM.0000036279.97458.8eDOI Listing

Publication Analysis

Top Keywords

vinyl chloride
12
plasticizer di2-ethylhexyl
8
di2-ethylhexyl phthalate
8
residual monomer
8
monomer vinyl
8
chloride pvc
8
titrimetric method
8
culture medium
8
amount
5
evaluation concentration
4

Similar Publications

Selective coupling of C platform molecules to C olefins is a cornerstone for establishing a sustainable chemical industry based on nonpetroleum sources. Vinyl chloride (CHCl), one of the top commodity petrochemicals, is commercially produced from coal- or oil-derived C hydrocarbon (acetylene and ethylene) feedstocks with a high carbon footprint. Here, we report a C-based route for vinyl chloride synthesis via the selective oxidative coupling of methyl chloride.

View Article and Find Full Text PDF

To clean or not to clean? The solution to this dilemma is related to understanding the plasticiser migration which has a few practical implications for the state of museum artefacts made of plasticised poly(vinyl chloride) - PVC and objects stored in their vicinity. The consequences of this process encompass aesthetic changes due to the presence of exudates and dust deposition, an increase in air pollution and the development of mechanical stresses. Therefore, this paper discusses the plasticiser migration in PVC to provide evidence and support the development of recommendations and guidelines for conservators, collection managers and heritage scientists.

View Article and Find Full Text PDF

Research has shown microplastic particles to be pervasive pollutants in the natural environment, but labor-intensive sample preparation, data acquisition, and analysis protocols continue to be necessary to navigate their diverse chemistry. Machine learning (ML) classification models have shown promise for identifying microplastics from their Raman spectra, but all attempts to date have focused on the lower energy "fingerprint" region of the spectrum. We explore strategies to improve ML classification models based on the -nearest-neighbor algorithm by including other regions of the Raman spectra.

View Article and Find Full Text PDF

Magnesium chloride-infused chitosan-poly(vinyl alcohol) electrolyte films: A versatile solution for energy storage devices.

Int J Biol Macromol

January 2025

Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.

The potential of advanced energy storage devices lies in using solid biodegradable polymer electrolytes. This study is focused on a solid blend polymer electrolyte (SBPE) film based on chitosan (CS)-poly(vinyl alcohol) (PVA) blend matrix doped with magnesium chloride (MgCl) salt via solution casting. The interaction of MgCl was verified via X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy.

View Article and Find Full Text PDF

The objective of the study was to examine the mechanical and electrostatic properties of poly(vinyl chloride) intended for use in protective footwear. The poly(vinyl chloride) material was made with graphite (flake side dimensions 5 and 10 µm) additive in weight concentration variants from 0.5 to 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!