AI Article Synopsis

Article Abstract

Chloroplast transformation systems offer unique advantages in biotechnology, including high level of foreign gene expression, maternal inheritance, and polycistronic expression. We studied chloroplast expression of LTK63 (change Ser-->Lys at position 63 in the A subunit) which is the mutant of Escherichia coli heat-labile toxin. LTK63 is devoid of any toxic activity, but still retains its mucosal adjuvanticity. The LTK63 was cloned into chloroplast targeting vector and transformed to tobacco chloroplasts by particle bombardment. PCR and Southern blot analyses confirmed stable homologous recombination of the LTK63 gene into the chloroplast genome. The amount of LTK63 protein detected in tobacco chloroplasts was approximately 3.7% of the total soluble protein. The GM1-ganglioside binding assay confirmed that chloroplast-synthesized LTB of LTK63 binds to the intestinal membrane GM1-ganglioside receptor. Thus, the expression of LTK63 in chloroplasts provides a potential route toward the development of a plant-based edible vaccine for high expression system and environmentally friendly approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2004.08.002DOI Listing

Publication Analysis

Top Keywords

tobacco chloroplasts
12
mutant escherichia
8
escherichia coli
8
coli heat-labile
8
expression ltk63
8
ltk63
7
expression
6
expression non-toxic
4
non-toxic mutant
4
heat-labile enterotoxin
4

Similar Publications

Wheat Leaf Rust Effector Pt48115 Localized in the Chloroplasts and Suppressed Wheat Immunity.

J Fungi (Basel)

January 2025

College of Plant Protection, Hebei Agricultural University, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071000, China.

Wheat leaf rust caused by () is a prevalent disease worldwide, seriously threatening wheat production. acquires nutrients from host cells via haustoria and secretes effector proteins to modify and regulate the expression of host disease resistance genes, thereby facilitating pathogen growth and reproduction. The study of effector proteins is of great significance for clarifying the pathogenic mechanisms of and effective control of leaf rust.

View Article and Find Full Text PDF

Terpenes are critical components of the floral fragrance component in , synthesized by terpene synthase (TPS). Analysis of the genome and transcriptional data revealed that the gene was significantly up-regulated during flowering periods, showing a strong correlation with the accumulation of aromatic monoterpenes in the floral components of . Consequently, the gene was selected for further analysis.

View Article and Find Full Text PDF

Protocol for the purification of the plastid-encoded RNA polymerase from transplastomic tobacco plants.

STAR Protoc

January 2025

National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

The plastid-encoded RNA polymerase (PEP) plays an essential role in the transcription of the chloroplast genome. Here, we present a strategy to purify the transcriptionally active protein complex from transplastomic tobacco (Nicotiana tabacum) lines in which one of the PEP core subunits is fused to an epitope tag. We describe experimental procedures for designing transformation constructs for PEP purification, selection, and analysis of transplastomic tobacco plants.

View Article and Find Full Text PDF

Proteomics has become a powerful approach for the identification and characterization of type III effectors (T3Es). Members of the species complex (RSSC) deploy T3Es to manipulate host cells and to promote root infection of, among others, a wide range of solanaceous plants such as tomato, potato, and tobacco. Here, we used TurboID-mediated proximity labeling (PL) in tomato hairy root cultures to explore the proxeomes of the core RSSC T3Es RipU, RipD, and RipB.

View Article and Find Full Text PDF

Chlamydomonas reinhardtii, a model green alga for expressing foreign proteins, faces challenges in multigene expression and enhancing protein expression level in the chloroplast. To address these challenges, we compared heterologous promoters, terminators and intercistronic expression elements (IEEs). We transformed Chlamydomonas chloroplast with a biolistic approach to introduce vectors containing the NanoLuc expression unit regulated by Chlamydomonas or tobacco promoters and terminators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!