Alpha-enolases are ubiquitous cytoplasmic, glycolytic enzymes. In pathogenic bacteria, alpha-enolase doubles as a surface-displayed plasmin(ogen)-binder supporting virulence. The plasmin(ogen)-binding site was initially traced to the two C-terminal lysine residues. More recently, an internal nine-amino acid motif comprising residues 248 to 256 was identified with this function. We report the crystal structure of alpha-enolase from Streptococcus pneumoniae at 2.0A resolution, the first structure both of a plasminogen-binding and of an octameric alpha-enolase. While the dimer is structurally similar to other alpha-enolases, the octamer places the C-terminal lysine residues in an inaccessible, inter-dimer groove restricting the C-terminal lysine residues to a role in folding and oligomerization. The nine residue plasminogen-binding motif, by contrast, is exposed on the octamer surface revealing this as the primary site of interaction between alpha-enolase and plasminogen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2004.08.088DOI Listing

Publication Analysis

Top Keywords

c-terminal lysine
12
lysine residues
12
alpha-enolase streptococcus
8
streptococcus pneumoniae
8
crystal structure
8
plasminogen-binding
5
plasminogen-binding alpha-enolase
4
pneumoniae crystal
4
structure evaluation
4
evaluation plasminogen-binding
4

Similar Publications

We report a study of internal covalent cross-linking with photolytically generated diarylnitrile imines of N-terminal arginine, lysine, and histidine residues in peptide conjugates. Conjugates in which a 4-(2-phenyltetrazol-5-yl)benzoyl group was attached to C-terminal lysine, that we call RAAA--K, KAAA--K, and HAAA--K, were ionized by electrospray and subjected to UV photodissociation (UVPD) at 213 nm. UVPD triggered loss of N and proceeded by covalent cross-linking to nitrile imine intermediates that involved the side chains of N-terminal arginine, lysine, and histidine, as well as the peptide amide groups.

View Article and Find Full Text PDF

ATPase family AAA domain-containing protein 2 (ATAD2) is significantly up-regulated in many cancer types and contributes to poor patient outcomes. ATAD2 exhibits a multidomain architecture comprising an N-terminal acidic domain, two AAA+ ATPase domains, a bromodomain, and a C-terminal domain. The AAA+ ATPase domain facilitates protein oligomerization and ATP binding, while the bromodomain recognizes acetylated lysine in histones and nonhistone proteins.

View Article and Find Full Text PDF

Histone methyltransferase NSD2 (MMSET) overexpression in multiple myeloma (MM) patients plays an important role in the development of this disease subtype. Through the expansion of transcriptional activating H3K36me2 and the suppression of repressive H3K27me3 marks, NSD2 activates an aberrant set of genes that contribute to myeloma growth, adhesive and invasive activities. NSD2 transcriptional activity also depends on its non-catalytic domains, which facilitate its recruitment to chromatin through histone binding.

View Article and Find Full Text PDF

Sequencing the monoclonal antibody variable regions using multiple charge integration middle-down strategy and ultraviolet photodissociation.

Anal Chim Acta

January 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Article Synopsis
  • Therapeutic monoclonal antibodies (mAbs) are important in targeted therapies due to their specificity and low side effects, making their CDR sequencing essential.
  • A new mass spectrometry strategy (MCI-MDMS) using ultraviolet photodissociation (UVPD) allows for greater sequence coverage of mAbs, achieving over 95% with complete CDR coverage.
  • This method not only improves sequencing accuracy but also enables reliable identification of post-translational modifications, providing a valuable tool for developing therapeutic mAbs and related biopharmaceuticals.
View Article and Find Full Text PDF

Structure and Methyl-lysine Binding Selectivity of the HUSH Complex Subunit MPP8.

J Mol Biol

January 2025

Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK. Electronic address:

The Human Silencing Hub (HUSH) guards the genome from the pathogenic effects of retroelement expression. Composed of MPP8, TASOR, and Periphilin-1, HUSH recognizes actively transcribed retrotransposed sequences by the presence of long (>1.5-kb) nascent transcripts without introns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!