The methanolyses of two neutral phosphorus triesters, paraoxon (1) and fenitrothion (3), were investigated as a function of added Zn(OTf)(2) or Zn(ClO(4))(2) in methanol at 25 degrees C either alone or in the presence of equimolar concentrations of the ligands phenanthroline (4), 2,9-dimethylphenanthroline (5), and 1,5,9-triazacyclododecane (6). The catalysis requires the presence of methoxide, and when studied as a function of added NaOCH(3), the rate constants (k(obs)) for methanolysis of Zn(2+) alone or in the presence of equimolar 4 or 5 maximize at different [(-)OCH(3)]/[Zn(2+)](total) ratios of 0.3, 0.5, and 1.0, respectively. Plots of k(obs) vs [Zn(2+)](total) either alone or in the presence of equimolar ligands 4 and 5 at the [(-)OCH(3)]/[Zn(2+)](total) ratios corresponding to the rate maxima are curved and show a nonlinear dependence on [Zn(2+)](total). In the cases of 4 and 5, this is explained as resulting from formation of a nonactive dimer, formulated as a bis-mu-methoxide-bridged form (L:Zn(2+)((-)OCH(3))(2)Zn(2+):L) in equilibrium with an active monomeric form (L:Zn(2+)((-)OCH(3))). In the case of the Zn(2+):6 system, no dimeric forms are present as can be judged by the strict linearity of the plots of k(obs) vs [Zn(2+)](total) in the presence of equimolar 6 and (-)OCH(3). Analysis of the potentiometric titration curves for Zn(2+) alone and in the presence of the ligands allows calculation of the speciation of the various Zn(2+) forms and shows that the binding to ligands 4 and 6 is very strong, while the binding to ligand 5 is weaker. Overall the best catalytic system is provided by equimolar Zn(2+), 5, and (-)OCH(3), which exhibits excellent turnover of the methanolysis of paraoxon when the substrate is in excess. At a concentration of 2 mM in each of these components, which sets the pH of the solution at 9.5, the acceleration of the methanolysis of paraoxon and fenitrothion relative to the methoxide reaction is 1.8 x 10(6)-fold and 13 x 10(6)-fold, respectively. A mechanism for the catalyzed reactions is proposed which involves a dual role for the metal ion as a Lewis acid and source of nucleophilic Zn(2+)-bound (-)OCH(3).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic030325rDOI Listing

Publication Analysis

Top Keywords

presence equimolar
16
paraoxon fenitrothion
12
zn2+ presence
8
[-och3]/[zn2+]total ratios
8
plots kobs
8
kobs [zn2+]total
8
[zn2+]total presence
8
methanolysis paraoxon
8
presence
6
equimolar
5

Similar Publications

Harnessing Halogenated Zeolitic Imidazolate Frameworks for Alcohol Vapor Adsorption.

Molecules

December 2024

Institut Européen des Membranes (IEM), CNRS, ENSCM, Univ Montpellier, Place Eugène Bataillon, 34095 Montpellier, France.

This study explores Zeolitic Imidazolate Frameworks (ZIFs) as promising materials for adsorbing alcohol vapors, one of the main contributors to air quality deterioration and adverse health effects. Indeed, this sub-class of Metal-Organic Frameworks (MOFs) offers a promising alternative to conventional adsorbents like zeolites and activated carbons for air purification. Specifically, this investigation focuses on ZIF-8_Br, a brominated version of ZIF-8_CH, to evaluate its ability to capture aliphatic alcohols at lower partial pressures.

View Article and Find Full Text PDF

The five-coordinate complex [RuCl(PNP)] () was synthesized from the binuclear [RuCl(-cym)] with a PNP-type ligand (PNP = 3,6-di--butyl-1,8-bis(dipropylphosphino)methyl)-9-carbazole - (Cbzdiphos )H) in a toluene solution, within 20 h at 110 °C, producing a green solid, which was precipitated with a 1/1 mixture of - pentane/HMDSO. The complex was characterized by NMR-H, C, and P{H}, mass spectroscopy-LIFDI, FTIR, UV/vis spectroscopy, and cyclic voltammetry, as well as a description of the optimized structure by DFT calculation. The reactivity of was investigated in the presence of potassium triethylborohydride (KBEtH, in THF solution of 1.

View Article and Find Full Text PDF

Selective O/N Separation Using Grazyne Membranes: A Computational Approach Combining Density Functional Theory and Molecular Dynamics.

Nanomaterials (Basel)

December 2024

Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain.

The separation of oxygen (O) and nitrogen (N) from air is a process of utmost importance nowadays, as both species are vital for numerous fundamental processes essential for our development. Membranes designed for their selective molecule separation have become the materials of choice for researchers, primarily due to their ease of use. The present study proposes grazynes, 2D carbon-based materials consisting of and C atoms, as suitable membranes for separating O and N from air.

View Article and Find Full Text PDF

Herein, we present a distorted square pyramidal mercury complex, [Hg(L)Cl] (1), based on a quinoline-substituted formazan ligand LH[3-Cyano-1,5-(quinolin-8-yl)formazan], which was evaluated for its anti-bacterial activity in vitro. Complex 1 was prepared by refluxing 3-Cyano-1,5-(quinolin-8-yl)formazan ligand and mercury chloride(II) in equimolar quantity and was characterized utilizing a range of analytical methods, including single crystal X-ray diffraction (SCXRD) technique. The crystal packing in complex 1 has been elucidated using supramolecular investigations, which have shown the presence of fascinating Hg-Cl⋅⋅⋅Hg intermolecular spodium bonds of the order 3.

View Article and Find Full Text PDF

The temperature-resolved structure evolution of quinary and quaternary equimolar oxides containing Mg, Ni, Zn, Co, and Cu is investigated by in situ synchrotron diffraction. Important structural modifications occur already at mild temperatures and depend on the elements involved. All quaternary compounds with χ(Cu) = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!