Objective: Mitogen-activated protein kinases (MAPKs) are activated by proinflammatory stimuli. MAPK phosphatases (MKPs), in particular MKP-1, have been identified as endogenous negative regulators of MAPK activation. Since MAPKs are known to be important in rheumatoid arthritis (RA) synoviocyte activation, this study assessed the expression, regulation, and function of MKP-1 in RA.
Methods: MKP-1 expression was measured by Western blotting (WB) and real-time polymerase chain reaction (PCR). RA fibroblast-like synoviocytes (FLS) were treated with interleukin-1beta (IL-1beta), tumor necrosis factor alpha, fetal calf serum, and dexamethasone. Expression of MAPKs in RA FLS was analyzed by WB using phosphospecific antibodies, while IL-6 expression was assessed by real-time PCR.
Results: MKP-1 protein and messenger RNA were detected in cultured RA FLS. IL-1beta rapidly up-regulated MKP-1, coinciding with reciprocal down-regulation of ERK, JNK, and p38 MAPK phosphorylation. Dexamethasone rapidly and sustainably up-regulated MKP-1, and this also coincided with down-regulation of ERK, JNK, and p38 MAPK phosphorylation. In addition, dexamethasone augmented IL-1beta-induced up-regulation of MKP-1, and this was associated with inhibition of ERK, JNK, and p38 MAPK phosphorylation and IL-6 expression. Dexamethasone had no effect on the phosphorylation of upstream kinases such as MEKK-3/6. In the presence of glucocorticoid (GC) receptor antagonist RU 486, the dexamethasone-mediated up-regulation of MKP-1 was impaired. Moreover, inhibition of MKP-1 expression impaired dexamethasone-mediated inhibition of MAPK phosphorylation.
Conclusion: This study demonstrates the expression of MKP-1 in RA FLS. Cytokine and GC regulation of MKP-1 may be important in determining the magnitude of the inflammatory response in RA that is mediated via MAPKs. The effects of GCs in RA may be mediated, in part, via GC receptor-dependent up-regulation of MKP-1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/art.20580 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!