Par6alpha signaling controls glial-guided neuronal migration.

Nat Neurosci

Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10021, USA.

Published: November 2004

Neuronal migrations along glial fibers provide a primary pathway for the formation of cortical laminae. To examine the mechanisms underlying glial-guided migration, we analyzed the dynamics of cytoskeletal and signaling components in living neurons. Migration involves the coordinated two-stroke movement of a perinuclear tubulin 'cage' and the centrosome, with the centrosome moving forward before nuclear translocation. Overexpression of mPar6alpha disrupts the perinuclear tubulin cage, retargets PKCzeta and gamma-tubulin away from the centrosome, and inhibits centrosomal motion and neuronal migration. Thus, we propose that during neuronal migration the centrosome acts to coordinate cytoskeletal dynamics in response to mPar6alpha-mediated signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nn1332DOI Listing

Publication Analysis

Top Keywords

neuronal migration
12
perinuclear tubulin
8
migration
5
par6alpha signaling
4
signaling controls
4
controls glial-guided
4
neuronal
4
glial-guided neuronal
4
migration neuronal
4
neuronal migrations
4

Similar Publications

In mammalian species, neural tissues cannot regenerate following severe spinal cord injury (SCI), for which stem cell transplantation is a promising treatment. Neural stem cells (NSCs) have the potential to repair SCI; however, in unfavourable microenvironments, transplanted NSCs mainly differentiate into astrocytes rather than neurons. In contrast, bone mesenchymal stem cells (BMSCs) promote the differentiation of NSCs into neurons and regulate inflammatory responses.

View Article and Find Full Text PDF

Single-Cell Transcriptome Reveals the Heterogeneity of T Cells in Mice with Systemic Lupus Erythematosus and Neuronal Inflammation.

J Inflamm Res

December 2024

Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.

Introduction: Systemic lupus erythematosus is a heterogeneous autoimmune disease. A burst of autoimmune reactions in various systems can lead to severe clinical conditions closely associated with mortality. T cells serve as mediators that drive the occurrence and maintenance of inflammatory processes.

View Article and Find Full Text PDF

Microglial-mediated neuroinflammation is crucial in the pathophysiological mechanisms of secondary brain injury (SBI) following intracerebral hemorrhage (ICH). Mitochondria are central regulators of inflammation, influencing key pathways such as alternative splicing, and play a critical role in cell differentiation and function. Mitochondrial ATP synthase coupling factor 6 (ATP5J) participates in various pathological processes, such as cell proliferation, migration, and inflammation.

View Article and Find Full Text PDF

Congenital Bilateral Perisylvian Syndrome: A Rare Case.

Pediatr Neurol

December 2024

Department of Pediatrics, St. Francis Hospital Nsambya, Kampala, Uganda; Consultant Pediatric Neurologist, Department of Pediatrics, St. Francis Hospital Nsambya, Kampala, Uganda.

Congenital bilateral perisylvian syndrome (CBPS) is a rare neuronal migration disorder of cortical development characterized by polymicrogyria on magnetic resonance imaging. Features include pseudobulbar palsy, language and speech difficulties, epilepsy, and cognitive deficits. We discuss the management of the case of a five-year-old male with classical features of CBPS.

View Article and Find Full Text PDF

Thyroid hormones (TH) play a key role in fetal brain development. While severe thyroid dysfunction, has been shown to cause neurodevelopmental and reproductive disorders, the rising levels of TH-disruptors in the environment in the past few decades have increased the need to assess effects of subclinical (mild) TH insufficiency during gestation. Since embryos do not produce their own TH before mid-gestation, early development processes rely on maternal production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!