The hard palate of rodents is a mucous membrane covered by a keratinized epithelium that typically contains Merkel cell (MC)-neurite complexes. MCs have engendered considerable research activity because of their involvement in mechanoreception and possibly also Merkel cell carcinomas. MCs derive from the neural crest, differentiate under control of peripheral nerve factors, are enriched in large dense core vesicles, and secrete neuropeptides and other neuroactive molecules. Upon stimulation, MC-neurite complexes produce slowly adapting type I responses. Here we emphasize that the murine hard palate is a highly differentiated sensory region, as shown by intravital staining with a styryl dye and immunocytochemistry with antibodies to vesicular glutamate transporters (VGLUTs). The entire palate contained densities of sensory endings and MC-neurite complexes, that nearly paralleled in abundance the vibrissal pads. MCs were differentially distributed in the murine palate; clusters of MCs were most abundant in the antemolar and intermolar rugae, while individual MCs were particularly enriched in the rugae at the mid-portion of the palate and in the postrugal field. VGLUT1, VGLUT2 and VGLUT3 were expressed in MCs throughout, although immunostained MCs were most frequently encountered in intermolar than antemolar rugae. The same transporters were also present in corpuscular endings at the summit of the rugae and in intraepithelial free nerve endings throughout the palate. VGLUTs presumably load glutamate into large dense core vesicles in MCs and into small clear vesicles in corpuscular and free nerve endings. The data suggest that glutamate release, or co-release, is likely to represent an important functional aspect of palatine Merkel cells and neighboring corpuscular and free nerve endings.

Download full-text PDF

Source
http://dx.doi.org/10.1023/B:NEUR.0000044196.45602.92DOI Listing

Publication Analysis

Top Keywords

nerve endings
20
free nerve
16
mc-neurite complexes
12
merkel cells
8
vesicular glutamate
8
glutamate transporters
8
hard palate
8
merkel cell
8
mcs
8
large dense
8

Similar Publications

Construction of a rodent neural network-skeletal muscle assembloid that simulate the postnatal development of spinal cord motor neuronal network.

Sci Rep

January 2025

Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.

Neuromuscular diseases usually manifest as abnormalities involving motor neurons, neuromuscular junctions, and skeletal muscle (SkM) in postnatal stage. Present in vitro models of neuromuscular interactions require a long time and lack neuroglia involvement. Our study aimed to construct rodent bioengineered spinal cord neural network-skeletal muscle (NN-SkM) assembloids to elucidate the interactions between spinal cord neural stem cells (SC-NSCs) and SkM cells and their biological effects on the development and maturation of postnatal spinal cord motor neural circuits.

View Article and Find Full Text PDF

Mechanisms of Cancer-Induced Bone Pain.

J Pain Res

January 2025

Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.

Bone is a common site of advanced cancer metastasis, second only to the lungs and liver. Cancer-induced bone pain (CIBP) is a persistent and intense pain that is caused by a combination of inflammatory and neuropathic factors. As CIBP progresses, the degree of pain intensifies.

View Article and Find Full Text PDF

The ubiquitin proteasome system (UPS) is implicated in protein homeostasis. One of the proteins involved in this system is HERC1 E3 ubiquitin ligase, which was associated with several processes including the normal development and neurotransmission at the neuromuscular junction (NMJ), autophagy in projection neurons, myelination of the peripheral nervous system, among others. The tambaleante (tbl) mouse model carries the spontaneous mutation Gly483Glu substitution in the HERC1 E3 protein.

View Article and Find Full Text PDF

Sarcopenia and cancer cachexia are two life-threatening conditions often misdiagnosed. The skeletal muscle is one of the organs most adversely affected by these conditions, culminating in poor quality of life and premature mortality. In addition, it has been suggested that chemotherapeutic agents exacerbate cancer cachexia, as is the case of doxorubicin.

View Article and Find Full Text PDF

The dysfunction of mitochondria, the primary source of cellular energy and producer of reactive oxygen species (ROS), is associated with brain aging and neurodegenerative diseases. Scientific evidence indicates that light in the visible and near-infrared spectrum can modulate mitochondrial activity, a phenomenon known in medicine as photobiomodulation therapy (PBM-t). The beneficial effects of PBM-t on dementia and neurodegeneration have been reviewed in the literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!