Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigate miscibility transitions of two different ternary lipid mixtures, DOPC/DPPC/Chol and POPC/PSM/Chol. In vesicles, both of these mixtures of an unsaturated lipid, a saturated lipid, and cholesterol form micron-scale domains of immiscible liquid phases for only a limited range of compositions. In contrast, in monolayers, both of these mixtures produce two distinct regions of immiscible liquid phases that span all compositions studied, the alpha-region at low cholesterol and the beta-region at high cholesterol. In other words, we find only limited overlap in miscibility phase behavior of monolayers and bilayers for the lipids studied. For vesicles at 25 degrees C, the miscibility phase boundary spans portions of both the monolayer alpha-region and beta-region. Within the monolayer beta-region, domains persist to high pressures, yet within the alpha-region, miscibility phase transition pressures always fall below 15 mN/m, far below the bilayer equivalent pressure of 32 mN/m. Approximately equivalent phase behavior is observed for monolayers of DOPC/DPPC/Chol and for monolayers of POPC/PSM/Chol. As expected, pressure-area isotherms of our ternary lipid mixtures yield smaller molecular area and compressibility for monolayers containing more saturated acyl chains and cholesterol. All monolayer experiments were conducted under argon. We show that exposure of unsaturated lipids to air causes monolayer surface pressures to decrease rapidly and miscibility transition pressures to increase rapidly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1305005 | PMC |
http://dx.doi.org/10.1529/biophysj.104.048439 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!