AI Article Synopsis

  • Programmed senescence in flower petals, specifically in Petunia x hybrida, involves fragmentation of nuclear DNA, which is observed during the wilting stage of the flower's lifespan and correlates with ethylene production.
  • The activity of a 43 kDa nuclease, named PhNUC1, increases during this process and is responsible for the DNA fragmentation; it functions optimally at pH 7.5 and is inhibited by EDTA, though can be restored by Co2+.
  • PhNUC1 is found primarily in the nuclear fraction of cells and its activity can be induced by ethylene, indicating that while ethylene influences the timing of its induction, it is not strictly necessary for PhNUC1 activation.

Article Abstract

The programmed senescence of flower petals has been shown to involve the fragmentation of nuclear DNA. Nuclear DNA fragmentation, as determined by the TUNEL assay, was detected in Petunia x hybrida corollas during both pollination-induced and age-related senescence. DNA fragmentation was detected late in the lifespan of the flower when corollas were wilting and producing ethylene. The induction of a 43 kDa nuclease (PhNUC1) correlated with increased DNA fragmentation. PhNUC1 is a glycoprotein with activity against DNA and RNA and a pH optimum of 7.5. EDTA was found to inhibit PhNUC1 activity, but the addition of Co2+ restored activity in the presence of the chelating agent. When total protein extracts from senescing petals were fractionated by differential centrifugation, PhNUC1 activity was detected in the nuclear but not the cytoplasmic fraction. Activity of PhNUC1 was induced in non-senescing corollas by treatment with ethylene. Delayed increases in PhNUC1 activity observed in ethylene-insensitive flowers (35S:etr1-1) suggest that ethylene modulates the timing of PhNUC1 induction, but that it is not an absolute requirement for its activation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/eri002DOI Listing

Publication Analysis

Top Keywords

dna fragmentation
16
phnuc1 activity
12
nuclear dna
8
phnuc1
7
activity
6
fragmentation
5
dna
5
increases dna
4
fragmentation induction
4
induction senescence-specific
4

Similar Publications

Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements, and DNA damage. Nuclear blebs (i.e.

View Article and Find Full Text PDF

Investigations on the effects of in vitro exposure of mouse ovaries to withaferin A, a new candidate for chemotherapy.

Reprod Toxicol

January 2025

Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, CEP: 60714-903, Fortaleza, CE, Brazil. Electronic address:

This study aimed to investigate, in vitro, the toxicity of WTA on ovarian follicles. Initially, a cytotoxicity assay was conducted using tumor and non-tumor cell lines to determine the ICof the WTA and validate its antitumor activity. Mouse ovaries were cultured in vitro (IVC) for 6 days in the presence of 1% dimethyl sulfoxide (DMSO), doxorubicin at 0.

View Article and Find Full Text PDF

Spatial multi-omics characterizes GPR35-relevant lipid metabolism signatures across liver zonation in MASLD.

Life Metab

December 2024

Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a metabolic disease that can progress to metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and cancer. The zonal distribution of biomolecules in the liver is implicated in mediating the disease progression. Recently, G-protein-coupled receptor 35 (GPR35) has been highlighted to play a role in MASLD, but the precise mechanism is not fully understood, particularly, in a liver-zonal manner.

View Article and Find Full Text PDF

CIDEC/FSP27 exacerbates obesity-related abdominal aortic aneurysm by promoting perivascular adipose tissue inflammation.

Life Metab

February 2025

Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China.

Abdominal aortic aneurysm (AAA) is strongly correlated with obesity, partially due to the abnormal expansion of abdominal perivascular adipose tissue (PVAT). Cell death-inducing DNA fragmentation factor-like effector C (CIDEC), also known as fat-specific protein 27 (FSP27) in rodents, is specifically expressed in adipose tissue where it mediates lipid droplet fusion and adipose tissue expansion. Whether and how CIDEC/FSP27 plays a role in AAA pathology remains elusive.

View Article and Find Full Text PDF

Hemangiosarcoma is a highly malignant tumor commonly affecting canines, originating from endothelial cells that line blood vessels, underscoring the importance of early detection. This canine cancer is analogous to human angiosarcoma, and the development of liquid biopsies leveraging cell-free DNA (cfDNA) represents a promising step forward in early cancer diagnosis. In this study, we utilized Whole Genome Sequencing (WGS) to analyze fragment sizes and copy number alterations (CNAs) in cfDNA from 21 hemangiosarcoma-affected and 36 healthy dogs, aiming to enhance early cancer detection accuracy through machine learning models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!