The European corn borer (ECB) consists of at least two, genetically differentiated host races: one feeding on maize, the other feeding on mugwort and hop. It is unclear to what extent individuals feeding on these, or other host plants, contribute to natural ECB populations. The mechanisms underlying the genetic differentiation between both races are not well understood; they may include sexual attraction via different pheromone blends (E or Z) and differences in the location of mating sites. We caught adult males with traps baited with the E or the Z blend at hop, maize, and 'mixed' sites. We determined their probable host race by allozyme-based genetic assignment, and the photosynthetic type of their host plant by stable carbon isotope analysis. Most individuals caught in Z traps had emerged from a C(4)-type plant and belonged to the maize race, whereas most individuals caught in E traps had emerged from C(3)-type plants and were but weakly differentiated from the hop-mugwort race, suggesting a strong, though not absolute, correspondence between host plant, host race and pherotype. We also found that although spatial segregation may contribute to genetic isolation between host races, moths of both host races may be present at a given location. Regarding the management of Bacillus thuringiensis (Bt) maize, our results indicate that, at least at the present study sites, it is unlikely that any wild or cultivated C(3)-type plant species could be a source of susceptible individuals that would mate randomly with Bt-resistant Z-C(4) moths emerging from Bt-maize fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1691838 | PMC |
http://dx.doi.org/10.1098/rspb.2004.2851 | DOI Listing |
Mol Plant Microbe Interact
January 2025
Universidad de los Andes, Biology, Cra 1 # 18A-10, Bogota, Cundinamarca, Colombia, 110121;
Pathogenic bacteria use Type 3 effector proteins to manipulate host defenses and alter metabolism to favor their survival and spread. The non-model bacterial pathogen pv. () causes devastating disease in cassava.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom.
Experiments have shown that when one plant is attacked by a pathogen or herbivore, this can lead to other plants connected to the same mycorrhizal network up-regulating their defense mechanisms. It has been hypothesized that this represents signaling, with attacked plants producing a signal to warn other plants of impending harm. We examined the evolutionary plausibility of this and other hypotheses theoretically.
View Article and Find Full Text PDFArch Insect Biochem Physiol
January 2025
Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece.
The discovery that infections of viruses are pervasive among insects has considerable potential for future applications, such as new strategies for pest control through the manipulation of virus-host interactions. However, few studies can be found that aim to minimize (for beneficial insects) or maximize (for pests) virus impact or virulence. Viruses generally employ molecular mechanisms that deviate from the cells' to increase their replication efficiency and to avoid the immune response.
View Article and Find Full Text PDFPest Manag Sci
January 2025
College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
Background: The cotton-melon aphid, Aphis gossypii Glover, is a polyphagous pest damaging plants across over 100 families. It has multiple host-specialized lineages, including one colonizing Malvaceae (MA) and one colonizing Cucurbitaceae (CU). The mechanisms underlying these host relationships remain unknown.
View Article and Find Full Text PDFFront Physiol
January 2025
Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China.
Background: (Fabricius) (Hemiptera: Alydidae) is a major soybean pest throughout East Asia that relies on its advanced olfactory system for the perception of plant-derived volatile compounds and aggregation pheromones for conspecific and host plant localization. Odorant binding proteins (OBPs) facilitate the transport of odorant compounds across the sensillum lymph within the insect olfactory system, enabling their interaction with odorant receptors (ORs).
Methods: Real-time quantitative PCR (qRT-PCR) analyses, fluorescence-based competitive binding assays, and molecular docking analyses were applied to assess the expression and ligand-binding properties of OBP38 from .
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!