A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structure and function of a cellulase gene in redclaw crayfish, Cherax quadricarinatus. | LitMetric

The most abundant organic compound produced by plants is cellulose; however, it has long been accepted that most animals do not produce endogenous enzymes required for its degradation, but rely instead on symbiotic relationships with microbes that produce the necessary enzymes. Here, we present the genomic organisation of an endogenous glycosyl hydrolase family (GHF) 9 gene in redclaw crayfish (Cherax quadricarinatus), consolidated from a cDNA sequence determined by Byrne et al. [Gene 239 (1999) 317-324.]. Comparison with several other invertebrate GHF9 genes reveals the conservation of both intron position/phase and splice sequence, which adds support to an argument for an ancestral animal cellulase gene. Furthermore, two introns in plant GHF9 genes are also identical in position, implying a more ancient origin for this class of animal cellulase. Protein purification from redclaw gastric fluid via fast performance liquid chromatography (FPLC) indicated the presence of two endoglucanase enzymes. The molecular weights of these components were determined by matrix-assisted laser desorption/ionisation-time-of-flight (MALDI-TOF) to be 47,887 Da (Cel1) and 50,295 Da (Cel2). Cel1 is possibly the functional product of the described cellulase gene, with N-terminal amino acid residues identical to the translated amino acid sequence from the corresponding gene region. Cel2 was identical to Cel1 for 7 of 11 N-terminal residues and likely to be the product of a paralogous endoglucanase gene. These results suggest that redclaw crayfish possess at least one and possibly two functional, endoglucanase enzymes, although further work is required to confirm their origin and attributes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2004.06.060DOI Listing

Publication Analysis

Top Keywords

cellulase gene
12
gene redclaw
12
redclaw crayfish
12
crayfish cherax
8
cherax quadricarinatus
8
ghf9 genes
8
animal cellulase
8
endoglucanase enzymes
8
amino acid
8
gene
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!