Previous clinical studies have demonstrated the feasibility of using edible transgenic plants to deliver protective antigens as new oral vaccines. Transgenic corn is particularly attractive for this purpose since the recombinant antigen is stable and homogeneous, and corn can be formulated in several edible forms without destroying the cloned antigen. Transgenic corn expressing 1 mg of LT-B of Escherichia coli without buffer was fed to adult volunteers in three doses, each consisting of 2.1 g of plant material. Seven (78%) of nine volunteers developed rises in both serum IgG anti-LT and numbers of specific antibody secreting cells after vaccination. Four (44%) of nine volunteers also developed stool IgA. Transgenic plants represent a new vector for oral vaccine antigens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2004.01.073DOI Listing

Publication Analysis

Top Keywords

transgenic corn
12
transgenic plants
8
volunteers developed
8
transgenic
5
immunogenicity recombinant
4
recombinant lt-b
4
lt-b delivered
4
delivered orally
4
orally humans
4
humans transgenic
4

Similar Publications

The development of transgressive segregant (TS) selection on convergent breeding populations of S4 maize is a concept that is rarely applied. However, the development of TS is necessary to accelerate maize breeding pipelines. Therefore, the objectives of this study were (1) to develop the concept of TS selection and (2) to select S4 TS maize to be developed as hybrid cross parents.

View Article and Find Full Text PDF

Coronaviruses continue to disrupt health and economic productivity worldwide. Porcine epidemic diarrhea virus (PEDV) is a devastating swine disease and SARS-CoV-2 is the latest coronavirus to infect the human population. Both viruses display a similar spike protein on the surface that is a target of vaccine development.

View Article and Find Full Text PDF

Tartary buckwheat is a nutrient-rich pseudo-cereal whose starch contents, including amylose and amylopectin contents, and their properties hold significant importance for enhancing yield and quality. The granule-bound starch synthase (GBSS) is a key enzyme responsible for the synthesis of amylose, directly determining the amylose content and amylose-to-amylopectin ratio in crops. Although one has already been cloned, the genes at the genome-wide level have not yet been fully assessed and thoroughly analyzed in Tartary buckwheat.

View Article and Find Full Text PDF

New Insight on the Sublethal Effect of Bt-Cry1Ab in (Fabricius): Tissular Distribution of Cry1Ab, Ultrastructural Alterations and the Lysosomal Response.

Insects

December 2024

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China.

Bt has been applied as a gene source for insect-resistant transgenic crops, which represents efficient control of insect pests. In this study, we evaluated the pesticidal specificity of one Bt maize strain, DBN9936, that expresses Cry1Ab protein in larvae. The results showed that this Bt maize is active against the younger larvae while causing a sublethal effect on older larvae.

View Article and Find Full Text PDF

Maize is one of the major crops that are susceptible to infection and subsequent aflatoxin contamination, which poses a serious health threat to humans and domestic animals. Here, an RNA interference (RNAi) approach called Host-Induced Gene Silencing (HIGS) was employed to suppress the -methyl transferase gene (, also called ), a key gene involved in aflatoxin biosynthesis. An RNAi vector carrying part of the gene was introduced into the B104 maize line.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!