Neurotoxicity of polychlorinated biphenyls (PCBs) is usually ascribed to the ortho-substituted congeners. We have examined the effects of acute perfusion of 3,3',4,4'-tetrachlorobiphenyl (PCB 77), a coplanar, dioxin-like congener, on long-term potentiation (LTP) in the Schaffer collateral-CA1 and the mossy fiber-CA3 pathways in mouse hippocampus. LTP in both pathways was blocked by PCB 77, with a threshold effect at a concentration of 1 microM. LTP is a useful model of learning and memory function in which a patterned stimulation of an afferent pathway produces a persistent increase in the efficacy of synaptic transmission. LTP is reduced by PCB mixtures and ortho-substituted congeners at concentrations comparable to those studied here. These observations provide evidence in support of the hypothesis that dioxin-like and non-dioxin-like PCB congeners are equally potent in causing the cognitive decrements seen in children exposed prenatally to PCBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuro.2004.03.014 | DOI Listing |
J Gen Physiol
March 2025
Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
Voltage-gated Ca2+ channels (VGCCs) are highly expressed throughout numerous biological systems and play critical roles in synaptic transmission, cardiac excitation, and muscle contraction. To perform these various functions, VGCCs are highly regulated. Inactivation comprises a critical mechanism controlling the entry of Ca2+ through these channels and constitutes an important means to regulate cellular excitability, shape action potentials, control intracellular Ca2+ levels, and contribute to long-term potentiation and depression.
View Article and Find Full Text PDFCureus
January 2025
Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, GBR.
Background: Obsessive-compulsive disorder (OCD) is a complex condition marked by persistent distressing thoughts and repetitive behaviours. Despite its prevalence, the mechanisms behind OCD remain elusive, and current treatments are limited. This protocol outlines an investigative study for individuals with OCD, exploring the potential of psilocybin to improve key components of cognition implicated in the disorder.
View Article and Find Full Text PDFBiomaterials
January 2025
144 College St, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada. Electronic address:
The development of disease-modifying therapeutics for Alzheimer's disease remains challenging due to the complex pathology and the presence of the blood-brain barrier. Previously we have described the investigation of a brain-penetrating multifunctional bioreactive nanoparticle system capable of remodeling the hypoxic and inflammatory brain microenvironment and reducing beta-amyloid plaques improving cognitive function in a mouse model of Alzheimer's disease. Despite the linkage of hypoxia and inflammation to metabolic alteration, the effects of this system on modulating cerebral glucose metabolism, mitochondrial activity and synaptic function remained to be elucidated.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
Deposition of abnormally phosphorylated tau aggregates is a central event leading to neuronal dysfunction and death in Alzheimer's disease (AD) and other tauopathies. Among tau aggregates, oligomers (TauOs) are considered the most toxic. AD brains show significant increase in TauOs compared to healthy controls, their concentration correlating with the severity of cognitive deficits and disease progression.
View Article and Find Full Text PDFNeurochem Res
January 2025
Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!