A real-time reporter system was developed to monitor the thermal induction of virulence factors in Yersinia pestis, the etiological agent of plague. The reporter system consists of a plasmid in Y. pestis in which the expression of green fluorescent protein (GFP) is under the control of the promoters for six virulence factors, yopE, sycE, yopK, yopT, yscN, and lcrE yopN, which are all components of the Type III secretion virulence mechanism of Y. pestis. Induction of the expression of these genes in vivo was determined by the increase in fluorescence intensity of GFP in real time, in 96-well format. Different basal levels of expression at 26 degrees C were observed for the Y. pestis promoters. Expressed as percentages of the level measured for the lac promoter (positive control), the basal expression levels before temperature shift were: yopE (15%), sycE (15%), yopK (13%), yopT (4%), lcrE (3.3%), and yscN (0.8%). Following the shift in temperature from 26 to 37 degrees C, the rates of expression of these genes increased with the yopE reporter showing the strongest degree of induction. The rates of induction of the other virulence factors after the temperature, expressed as percentages of yopE induction, were: yopK (57%), sycE (9%), yscN (3%), lcrE (3%), and yopT (2%). The thermal induction of each of these promoter fusions was repressed by calcium, and the ratios of the initial rates of thermal induction without calcium supplementation compared to the rate with calcium supplementation were: yopE (11-fold), yscN (7-fold), yopK (6-fold), lcrE (3-fold), yopT (2-fold), and sycE (1-fold). This work demonstrates a novel approach to quantify gene induction and provides a method to rapidly determine the effects of external stimuli on expression of Y. pestis virulence factors in real time, in living cells, as a means to characterize virulence determinants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2004.08.236 | DOI Listing |
Arch Microbiol
January 2025
Department of Stomatology, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
Treponema denticola, a bacterium that forms a "red complex" with Porphyromonas gingivalis and Tannerella forsythia, is associated with periodontitis, pulpitis, and other oral infections. The major surface protein (Msp) is a surface glycoprotein with a relatively well-established overall domain structure (N-terminal, central and C-terminal regions) and a controversial tertiary structure. As one of the key virulence factors of T.
View Article and Find Full Text PDFLett Appl Microbiol
January 2025
Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University.
MRSA's resistance poses a global health challenge. This study investigates lysine succinylation in MRSA using proteomics and bioinformatics approaches to uncover metabolic and virulence mechanisms, with the goal of identifying novel therapeutic targets. Mass spectrometry and bioinformatics analyses mapped the MRSA succinylome, identifying 8 048 succinylation sites on 1 210 proteins.
View Article and Find Full Text PDFVirulence
December 2025
Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.
View Article and Find Full Text PDFMol Plant Pathol
January 2025
Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
Bacterial blight of cotton (BBC) caused by Xanthomonas citri pv. malvacearum (Xcm) is an important and destructive disease affecting cotton plants. Transcription activator-like effectors (TALEs) released by the pathogen regulate cotton resistance to the susceptibility.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
January 2025
Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China. Electronic address:
Yersinia ruckeri is known to cause enteric red mouth disease (ERM) in channel catfish (Ictalurus punctatus). This study first established a model of Y. ruckeri-induced intestinal inflammation in channel catfish.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!