Objective: The main purpose of this study is to detect the frequency and type of both chromosomal abnormalities and Y chromosome microdeletions in patients with severe male factor infertility and fertile control subjects. The association between the genetic abnormality and clinical parameters was also evaluated.
Methods: This study was carried out in 208 infertile and 20 fertile men. Results of 208 patients, 119 had non-obstructive azoospermia and 89 had severe oligoasthenoteratozoospermia (OAT). Seventeen out of 119 (14.3%) azoospermic patients and two out of 89 (2.2%) patients with OAT had Y chromosome microdeletions. In total, 19 cases with deletions were detected in 208 infertile men, with a frequency of 9.1%. The AZFc locus, mainly DAZ gene cluster was the most frequently deleted region. Five other cases with azoospermia (4.2%) and two cases with OAT (2.2%) had a chromosomal abnormality, with a total number of seven (3.4%). Including Y chromosome deletions and structural chromosome abnormalities, the rate of genetic abnormalities was 12.5% (26/208) in our patients. On the other hand, 20 men with proven fertility and fathers of five cases with microdeletions were genetically normal. Y chromosome deletions and chromosomal abnormalities were associated with various histological alterations in testis. Sertoli cell-only (SCO) syndrome and maturation arrest predominated in these cases, whereas hypospermatogenesis occurred more frequently in genetically normal patients.
Conclusion: Various chromosomal abnormalities and deletions of Y chromosome can cause spermatogenic breakdown resulting in chromosomally derived infertility. All these findings strongly support the recommendation of genetic screening of infertile patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejogrb.2003.07.006 | DOI Listing |
PLoS One
January 2025
Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe Central Hospital, Luohe, Henan Province, People's Republic of China.
Purpose: To evaluate the clinical performance of expanded non-invasive prenatal testing (NIPT-plus) and compare its effectiveness in screening for chromosomal aneuploidies with that of NIPT.
Methods: Screening results, confirmatory invasive testing results, and follow-up data from pregnant women who underwent either NIPT (6792 cases) or NIPT-Plus (5237 cases) testing at Luohe Central Hospital, China, from January 2019 to June 2023 were collected. The positive predictive value (PPV), sensitivity, specificity, and other indicators for different types of chromosomal abnormalities in NIPT/NIPT-plus screening were calculated.
Elife
January 2025
Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
-methyladenosine (mA) in eukaryotic RNA is an epigenetic modification that is critical for RNA metabolism, gene expression regulation, and the development of organisms. Aberrant expression of mA components appears in a variety of human diseases. RNA mA modification in has proven to be involved in sex determination regulated by and may affect X chromosome expression through the MSL complex.
View Article and Find Full Text PDFCells
January 2025
School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
Acute lymphoblastic leukaemia is the most common childhood malignancy that remains a leading cause of death in childhood. It may be characterised by multiple known recurrent genetic aberrations that inform prognosis, the most common being hyperdiploidy and t(12;21) . We aimed to assess the applicability of a new imaging flow cytometry methodology that incorporates cell morphology, immunophenotype, and fluorescence in situ hybridisation (FISH) to identify aneuploidy of chromosomes 4 and 21 and the translocation .
View Article and Find Full Text PDFBiol Open
January 2025
Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal 576104, India.
Chromosomal aneuploidies are a major cause of developmental failure and pregnancy loss. To investigate the possible consequences of aneuploidy on early embryonic development in vitro, we focused on primed pluripotent stem cells that are relatable to the epiblast of post-implantation embryos in vivo. We used human induced pluripotent stem cells (iPSCs) as an epiblast model and altered chromosome numbers by treating with reversine, a small-molecule inhibitor of monopolar spindle 1 kinase (MSP1) that inactivates the spindle assembly checkpoint, which has been strongly implicated in chromosome mis-segregation and aneuploidy generation.
View Article and Find Full Text PDFSci Rep
January 2025
Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
Copy number variation (CNV) of the amyloid-β precursor protein gene (APP) is a known cause of autosomal dominant Alzheimer disease (ADAD), but de novo genetic variants causing ADAD are rare. We report a mother and daughter with neuropathologically confirmed definite Alzheimer disease (AD) and extensive cerebral amyloid angiopathy (CAA). Copy number analysis identified an increased number of APP copies and genome sequencing (GS) revealed the underlying complex genomic rearrangement (CGR) including a triplication of APP with two unique breakpoint junctions (BPJs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!