Neural stem cells (NSCs) reside in the anterior portion of the forebrain subventricular zone (SVZa) and generate the progenitors which will differentiate into neurons, and via a tangential migratory pathway, known as the rostral migratory stream (RMS), migrate to the olfactory bulbs (OB). Bone morphogenetic proteins (BMPs) play significant roles in neural development at different stages and locations, but their roles have not been determined in the SVZa. To explore possible roles of BMPs in SVZa NSCs, BMP4 at various concentrations were tested for their capacity to induce SVZa NSCs. The expression of BMP4 was also examined in living cells using a reportor vector, in which the BMP4 promotor was conjugated with red fluorescent protein (RFP). In the meantime, the differentiation of SVZa NSCs was dynamically monitored by using reportor vectors of the Nestin enhancer and the promoters of TH and GFAP. In the OB, high expression of BMP4 was found using both promoter activity analysis and in situ hybridization. However, low BMP4 expression was found in the RMS and only moderate expression of BMP4 was displayed in the SVZa. The results also demonstrated that low concentrations (1-5 ng/ml) of BMP4 promoted the proliferation of SVZa NSCs but high concentrations (10-100 ng/ml) of BMP4 inhibited this proliferation. BMP4 enhanced neuron commitment before 4 days but inhibited it after 4 days. As the antagonist of BMP4, Noggin almost completely blocked all these BMP4 responses. Thus, our findings indicate that BMP4 promotes the exit from the cell cycle and triggers the differentiation of neuron progenitors in the OB. BMP4 also promotes the proliferation of the committed neuron progenitors in the RMS, but in the SVZa, BMP4 may facilitate the commitment of NSCs into astrocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2004.07.015DOI Listing

Publication Analysis

Top Keywords

svza nscs
16
bmp4
15
expression bmp4
12
svza
9
neural stem
8
stem cells
8
ng/ml bmp4
8
bmp4 promotes
8
neuron progenitors
8
nscs
6

Similar Publications

The denervated hippocampus provides proper microenvironment for the survival and differentiation of neural progenitors.

Neurosci Lett

March 2007

Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, People's Republic of China.

The fate of neural stem/progenitor cells (NSCs/NPCs) in vivo lies on the local microenvironment. Whether the denervated hippocampus provides a stimulative role on the survival and differentiation of the anterior subventricular zone (SVZa) progenitors was investigated in the present study. In vivo the SVZa progenitors were transplanted into the denervated hippocampus and the contralateral side, and were found migrating along the subgranular layer.

View Article and Find Full Text PDF

The adult neural stem and progenitor cell niche is altered in amyotrophic lateral sclerosis mouse brain.

J Comp Neurol

July 2006

Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA.

Amyotrophic lateral sclerosis (ALS) is a fatal adult human disease caused by motor neuron degeneration. Stem cell therapy might be a treatment for ALS. The adult mammalian forebrain has neural stem cells (NSCs) and neural progenitor cells (NPCs) in the anterior subventricular zone (SVZa), rostral migratory stream (RMS), olfactory bulb (OB) core, and dentate gyrus (DG).

View Article and Find Full Text PDF

Cells within the subventricular zone (SVZ) express basic Fgf (Fgf2) and Fgf receptor proteins. We show that the absence of Fgf2 gene products reduces by 50% the dividing progenitor population of the anterior SVZ (SVZa) without changing their cell cycle time. Every 2-3 cell cycles of the SVZa progenitor cell population, 30,000 newly generated neurons capable of long-term survival are added to the glomerular layer of the olfactory bulb.

View Article and Find Full Text PDF

Neural stem cells (NSCs) reside in the anterior portion of the forebrain subventricular zone (SVZa) and generate the progenitors which will differentiate into neurons, and via a tangential migratory pathway, known as the rostral migratory stream (RMS), migrate to the olfactory bulbs (OB). Bone morphogenetic proteins (BMPs) play significant roles in neural development at different stages and locations, but their roles have not been determined in the SVZa. To explore possible roles of BMPs in SVZa NSCs, BMP4 at various concentrations were tested for their capacity to induce SVZa NSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!