The first steps of glucose metabolism are carried out by members of the families of GLUTs (glucose transporters) and HKs (hexokinases). Previous experiments using the inhibitor of glucose transport, CB (cytochalasin B), revealed that compartmentalization of GLUTs and HKs is a major factor in the control of glucose uptake in L6 myotubes [Whitesell, Ardehali, Printz, Beechem, Knobel, Piston, Granner, Van Der Meer, Perriott and May (2003) Biochem. J. 370, 47-56]. In the present paper, we evaluate compartmentalization of GLUTs and HKs in a hepatoma cell line, H4IIE, which is characterized by excess GLUT activity, HKI in a particulate and a cytosolic fraction, and insignificant G6Pase (glucose-6-phosphatase) activity. The measured activity of glucose transport exceeded the rate of phosphorylation approx. 30-fold. Treatment with 25 microM CB (K(i) approximately 3 microM in H4IIE cells) paradoxically increased the excess of GLUTs over phosphorylation (GLUTs are inhibited 80%, while phosphorylation is inhibited 98%). The global relationships of the data could be reconciled most simply by a two-compartment model. In this model, phosphorylation of glucose is carried out by a subset of HK molecules supplied by a subset of GLUTs that are more sensitive to CB than the other GLUTs. The agent, DCC (dicyclohexylcarbodi-imide) caused HKI to translocate from the particulate compartment to the cytosolic compartment and potently inhibited glucose phosphorylation. The particulate compartment may represent the mitochondria, to which the more CB-sensitive GLUTs may control the transport of glucose.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1134788PMC
http://dx.doi.org/10.1042/BJ20040901DOI Listing

Publication Analysis

Top Keywords

glucose
9
phosphorylation glucose
8
hepatoma cell
8
gluts
8
glucose transport
8
compartmentalization gluts
8
gluts hks
8
particulate compartment
8
phosphorylation
6
compartmentalization transport
4

Similar Publications

Pharmacologic Management of Heart Failure with Preserved Ejection Fraction (HFpEF) in Older Adults.

Drugs Aging

January 2025

Program for the Care and Study of the Aging Heart, Department of Medicine, Weill Cornell Medicine, 420 East 70th St, New York, NY, LH-36510063, USA.

There are several pharmacologic agents that have been touted as guideline-directed medical therapy for heart failure with preserved ejection fraction (HFpEF). However, it is important to recognize that older adults with HFpEF also contend with an increased risk for adverse effects from medications due to age-related changes in pharmacokinetics and pharmacodynamics of medications, as well as the concurrence of geriatric conditions such as polypharmacy and frailty. With this review, we discuss the underlying evidence for the benefits of various treatments in HFpEF and incorporate key considerations for older adults, a subpopulation that may be at higher risk for adverse drug events.

View Article and Find Full Text PDF

Novel Therapies for Right Ventricular Failure.

Curr Cardiol Rep

January 2025

Pediatric Advanced Heart Failure and Heart Transplant Program, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.

Purpose Of Review: Traditionally viewed as a passive player in circulation, the right ventricle (RV) has become a pivotal force in hemodynamics. RV failure (RVF) is a recognized complication of primary cardiac and pulmonary vascular disorders and is associated with a poor prognosis. Unlike treatments for left ventricular failure (LVF), strategies such as adrenoceptor signaling inhibition and renin-angiotensin system modulation have shown limited success in RVF.

View Article and Find Full Text PDF

Pro-Arg, The Potential Anti-Diabetes Peptide, Screened from Almond by In-Silico Analysis.

Plant Foods Hum Nutr

January 2025

College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.

Insulin resistance was considered to be the most important clinical phenotype of type 2 diabetes (T2DM). Almond is a widely-consumed nut and long-term intake was beneficial to alleviating insulin resistance in patients with T2DM. Hence, screening of anti-diabetic peptides from almond proteins was feasible based on the effectiveness of peptides in the treatment of T2DM.

View Article and Find Full Text PDF

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

The incidence of type 2 diabetes has risen globally, in parallel with the obesity epidemic and environments promoting a sedentary lifestyle and low-quality diet. There has been scrutiny of ultra-processed foods (UPFs) as a driver of type 2 diabetes, underscored by their increasing availability and intake worldwide, across countries of all incomes. This narrative review addresses the accumulated evidence from investigations of the trends in UPF consumption and the relationship with type 2 diabetes incidence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!