We present a comprehensive mass spectrometric approach that integrates intact protein molecular mass measurement ("top-down") and proteolytic fragment identification ("bottom-up") to characterize the 70S ribosome from Rhodopseudomonas palustris. Forty-two intact protein identifications were obtained by the top-down approach and 53 out of the 54 orthologs to Escherichia coli ribosomal proteins were identified from bottom-up analysis. This integrated approach simplified the assignment of post-translational modifications by increasing the confidence of identifications, distinguishing between isoforms, and identifying the amino acid positions at which particular post-translational modifications occurred. Our combined mass spectrometry data also allowed us to check and validate the gene annotations for three ribosomal proteins predicted to possess extended C-termini. In particular, we identified a highly repetitive C-terminal "alanine tail" on L25. This type of low complexity sequence, common to eukaryotic proteins, has previously not been reported in prokaryotic proteins. To our knowledge, this is the most comprehensive protein complex analysis to date that integrates two MS techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr049940zDOI Listing

Publication Analysis

Top Keywords

70s ribosome
8
ribosome rhodopseudomonas
8
rhodopseudomonas palustris
8
mass spectrometric
8
spectrometric approach
8
intact protein
8
ribosomal proteins
8
post-translational modifications
8
characterization 70s
4
palustris integrated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!