Wavelength response of waveguide volume grating couplers for optical interconnects.

Appl Opt

School of Electrical and Computer Engineering, Microelectronics Research Center, Georgia Institute of Technology, Atlanta, Georgia 30332-0250, USA.

Published: September 2004

The wavelength response of a waveguide volume grating coupler (WVGC) is analyzed for coupling light from a slab waveguide into the superstrate. A leaky-mode approach is used in conjunction with rigorous coupled-wave analysis. A quantitative theoretical study of the effect of index modulation, waveguide index, and grating thickness on the wavelength bandpass of a WVGC is also presented. The FWHM wavelength bandpasses found for high-efficiency couplers range from 173 to 525 nm. The various Bragg conditions that can be used in designing a WVGC are also presented and compared. The use of the propagation constant of the mode being outcoupled as the incident wave vector in the Bragg condition is shown to produce the highest coupling efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.43.005162DOI Listing

Publication Analysis

Top Keywords

wavelength response
8
response waveguide
8
waveguide volume
8
volume grating
8
wvgc presented
8
wavelength
4
waveguide
4
grating couplers
4
couplers optical
4
optical interconnects
4

Similar Publications

Halide perovskites are used to fabricate energy-efficient optoelectronic devices. Determining which compositions yield desired chromatic responses is challenging, especially when doping strategies are used. Here, we report a way of mapping the compositional space of halide perovskites to generate a light emission or "chromaticity" palette.

View Article and Find Full Text PDF

An unprecedented double photoexcitation mechanism for photoswitching in conjugated-dienes to trigger physiological processes for photopharmacology.

Org Biomol Chem

January 2025

Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.

The optical control of physiological processes with high precision using photoswitches is an emerging strategy for non-invasive diagnosis and therapies, providing innovative solutions to complex biomedical challenges. Light-responsive cyclic conjugated-dienes (cCDs) have long been recognized for their 4π-photocyclization; however, photoswitching behaviour in medium-sized cCDs has recently been reported, representing a pioneering discovery in the field. Reinforced by previous experimental evidence corroborating the Woodward-Hoffmann rules, this report provides insight into the origin of the exotic dual photoexcitation mechanism devised to achieve thermo-reversible photoswitching in large cCDs with cyclodeca-1,3-diene as a prototype.

View Article and Find Full Text PDF

Metal nanoparticles are established tools for biomedical applications due to their unique optical properties, primarily attributed to localized surface plasmon resonances. They show distinct optical characteristics, such as high extinction cross-sections and resonances at specific wavelengths, which are tunable across the wavelength spectrum by modifying the nanoparticle geometry. These attributes make metal nanoparticles highly valuable for sensing and imaging in biology and medicine.

View Article and Find Full Text PDF

Cavity correlations and the onset of charge ordering at charged interfaces: A modified Poisson-Fermi approach.

J Chem Phys

January 2025

Instituto de Física, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brazil.

Charge layering in the close vicinity of charged interfaces is a well-known effect, extensively reported in both experiments and simulations of Room Temperature Ionic Liquids (RTILs) and concentrated electrolytes. The traditional Poisson-Fermi (PF) theory is able to successfully describe overcrowding effects but fails to reproduce charge ordering even in strong coupling regimes. Simple models, yet capable of investigating the interplay between these important interfacial phenomena, are still lacking.

View Article and Find Full Text PDF

The practical applications of activation-unstable mesoporous metal-organic frameworks (MOFs) are often constrained by their structural instability. However, enhancing their stability could unlock valuable functionalities. Herein, we stabilized the otherwise unstable, post-activated structure of a novel mesoporous Zr(IV)-MOF, NKM-809, which uses a pyridine-containing amphiprotic linker (PPTB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!