An electrostatically actuated micro peristaltic pump is reported. The micro pump is entirely surface micromachined using a multilayer parylene technology. Taking advantage of the multilayer technology, the micro pump design enables the pumped fluid to be isolated from the electric field. Electrostatic actuation of the parylene membrane using both DC and AC voltages was demonstrated and applied to fluid pumping based on a 3-phase peristaltic sequence. A maximum flow rate of 1.7 nL min(-1) and an estimated pumping pressure of 1.6 kPa were achieved at 20 Hz phase frequency. A dynamic analysis was also performed with a lumped-parameter model for the peristaltic pump. The analysis results allow a quantitative understanding of the peristaltic pumping operation, and correctly predict the trends exhibited by the experimental data. The small footprint of the micro pump is well suited for large-scale integration of microfluidics. Moreover, because the same platform technology has also been used to fabricate other devices (e.g. valves, electrospray ionization nozzles, filters and flow sensors), the integration of these different devices can potentially lead to versatile and functional micro total analysis systems (microTAS).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b403906h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!