Using the macro-patch clamp technique, we show that cardiac myocytes isolated from the heart of the oyster Crassostrea gigas possess several types of voltage-activated ionic currents. (1) A classical non-inactivating potassium current of the IK type that is inhibited by tetraethyl ammonium and shows an outward rectification and a slow activation. (2) A potassium current of the IA type that shows rapid activation and inactivation, and is blocked by 4-amino pyridine or preliminary depolarisation. (3) A potassium calcium-dependent current that is inhibited by charybdotoxin, activated by strong depolarisations and shows a large conductance. (4) A calcium inward current of the L-type that is inhibited by verapamil, cobalt and high concentrations of cadmium. This current is identified in most cells, but a T-type calcium current and classical fast sodium current are only identified in few cells, and only after a strong hyperpolarizing pulse. This suggests that these channels are normally inactivated in cultured cells and are not involved in the spontaneous activity of these cells. When they exist, the fast sodium channel is blocked by tetrodotoxin. The L-type calcium conductance is increased by serotonin. The identification in cultured oyster atrial cells of classical ionic currents, which are observed in most vertebrate species but only in a few species of molluscs, demonstrates that these cells are an interesting model. Moreover the viability and the electrophysiological properties of these cells are not significantly modified by freezing and thawing, thus increasing their usefulness in various bioassays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.01221 | DOI Listing |
Immun Inflamm Dis
January 2025
Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
Background: Sepsis is associated with myocardial injury and early mortality. The innate immune receptor Toll-like receptor 4 (TLR4) can recognize pathogen-associated-molecular-patterns (PAMPs) and damage-associated molecular patterns (DAMPs); the latter are released during tissue injury. We hypothesized that TLR4 inhibition reduces proinflammatory signaling and cytokine release in: (1) LPS or Escherichia coli-treated isolated mouse heart; (2) LPS-treated mouse primary adult cardiomyocytes; and (3) the isolated heart during ischemia-reperfusion.
View Article and Find Full Text PDFVet Sci
December 2024
College of Veterinary Medicine, Yangzhou University/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China.
This study investigated the effects of long-term serum starvation on autophagy, metabolism, and differentiation of porcine skeletal muscle satellite cells (SMSCs) and elucidated the role of autophagy in skeletal muscle development. Our findings provide a theoretical basis for improving meat production in domestic pigs. The SMSCs isolated and preserved in our laboratory were revived and divided into six groups based on the culture medium serum concentration to simulate varying levels of serum starvation: 20% serum (control group), 15% serum (mild serum starvation group), 5% serum (severe serum starvation group), and their autophagy inhibition groups supplemented with 3-methyladenine.
View Article and Find Full Text PDFCells
January 2025
Reproductive Biology Laboratory, Amsterdam UMC-Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
(1) Background: For the reconstruction of a human vagina, various surgical procedures are available that are often associated with complications due to their failure to mimic the physiology of the human vagina. We recently developed a vascularized, organ-specific matrix from healthy human vaginal wall tissue with suitable biomechanical properties. A superior graft would require further extensive colonization with autologous vaginal cells to reduce complications upon implantation.
View Article and Find Full Text PDFHypertension
January 2025
Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (S.A.P., I.Q., D. Arifaj, M.K., D. Argov, L.C.R., J.S.).
Background: Ciliary neurotrophic factor (CNTF), mainly known for its neuroprotective properties, belongs to the IL-6 (interleukin-6) cytokine family. In contrast to IL-6, the effects of CNTF on the vasculature have not been explored. Here, we examined the role of CNTF in AngII (angiotensin II)-induced hypertension.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China.
Background: Exosomes sourced from mesenchymal stem cells (MSC-EXOs) have become a promising therapeutic tool for sepsis-induced myocardial dysfunction (SMD). Our previous study demonstrated that Apelin pretreatment enhanced the therapeutic benefit of MSCs in myocardial infarction by improving their paracrine effects. This study aimed to determine whether EXOs sourced from Apelin-pretreated MSCs (Apelin-MSC-EXOs) would have potent cardioprotective effects against SMD and elucidate the underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!