Characterization of the voltage-activated currents in cultured atrial myocytes isolated from the heart of the common oyster Crassostrea gigas.

J Exp Biol

EA 3879, Unité de Physiologie Comparée et Intégrative, Institut de Synergie des Sciences et de la Santé, 22 avenue Camille Desmoulins, CS93837, 29238, Brest-cedex 3, France.

Published: October 2004

AI Article Synopsis

  • Cardiac myocytes from Crassostrea gigas show multiple types of voltage-activated ionic currents, including a non-inactivating potassium current (IK type), a rapidly activating and inactivating potassium current (IA type), and a calcium-dependent potassium current.
  • The study identifies L-type calcium currents in most cells, with T-type calcium currents and fast sodium currents present only in some cells, suggesting these channels are largely inactive in cultured conditions.
  • The findings indicate that these oyster cells offer a valuable model for studying ionic currents similar to those in vertebrates, and their electrical properties remain stable even after freezing and thawing, enhancing their utility for bioassays.

Article Abstract

Using the macro-patch clamp technique, we show that cardiac myocytes isolated from the heart of the oyster Crassostrea gigas possess several types of voltage-activated ionic currents. (1) A classical non-inactivating potassium current of the IK type that is inhibited by tetraethyl ammonium and shows an outward rectification and a slow activation. (2) A potassium current of the IA type that shows rapid activation and inactivation, and is blocked by 4-amino pyridine or preliminary depolarisation. (3) A potassium calcium-dependent current that is inhibited by charybdotoxin, activated by strong depolarisations and shows a large conductance. (4) A calcium inward current of the L-type that is inhibited by verapamil, cobalt and high concentrations of cadmium. This current is identified in most cells, but a T-type calcium current and classical fast sodium current are only identified in few cells, and only after a strong hyperpolarizing pulse. This suggests that these channels are normally inactivated in cultured cells and are not involved in the spontaneous activity of these cells. When they exist, the fast sodium channel is blocked by tetrodotoxin. The L-type calcium conductance is increased by serotonin. The identification in cultured oyster atrial cells of classical ionic currents, which are observed in most vertebrate species but only in a few species of molluscs, demonstrates that these cells are an interesting model. Moreover the viability and the electrophysiological properties of these cells are not significantly modified by freezing and thawing, thus increasing their usefulness in various bioassays.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.01221DOI Listing

Publication Analysis

Top Keywords

myocytes isolated
8
isolated heart
8
oyster crassostrea
8
crassostrea gigas
8
ionic currents
8
potassium current
8
current type
8
calcium current
8
current identified
8
identified cells
8

Similar Publications

TLR4 Inhibition Attenuated LPS-Induced Proinflammatory Signaling and Cytokine Release in Mouse Hearts and Cardiomyocytes.

Immun Inflamm Dis

January 2025

Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.

Background: Sepsis is associated with myocardial injury and early mortality. The innate immune receptor Toll-like receptor 4 (TLR4) can recognize pathogen-associated-molecular-patterns (PAMPs) and damage-associated molecular patterns (DAMPs); the latter are released during tissue injury. We hypothesized that TLR4 inhibition reduces proinflammatory signaling and cytokine release in: (1) LPS or Escherichia coli-treated isolated mouse heart; (2) LPS-treated mouse primary adult cardiomyocytes; and (3) the isolated heart during ischemia-reperfusion.

View Article and Find Full Text PDF

This study investigated the effects of long-term serum starvation on autophagy, metabolism, and differentiation of porcine skeletal muscle satellite cells (SMSCs) and elucidated the role of autophagy in skeletal muscle development. Our findings provide a theoretical basis for improving meat production in domestic pigs. The SMSCs isolated and preserved in our laboratory were revived and divided into six groups based on the culture medium serum concentration to simulate varying levels of serum starvation: 20% serum (control group), 15% serum (mild serum starvation group), 5% serum (severe serum starvation group), and their autophagy inhibition groups supplemented with 3-methyladenine.

View Article and Find Full Text PDF

Reproducibility and Consistency of Isolation Protocols for Fibroblasts, Smooth Muscle Cells, and Epithelial Cells from the Human Vagina.

Cells

January 2025

Reproductive Biology Laboratory, Amsterdam UMC-Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.

(1) Background: For the reconstruction of a human vagina, various surgical procedures are available that are often associated with complications due to their failure to mimic the physiology of the human vagina. We recently developed a vascularized, organ-specific matrix from healthy human vaginal wall tissue with suitable biomechanical properties. A superior graft would require further extensive colonization with autologous vaginal cells to reduce complications upon implantation.

View Article and Find Full Text PDF

Role of Ciliary Neurotrophic Factor in Angiotensin II-Induced Hypertension.

Hypertension

January 2025

Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (S.A.P., I.Q., D. Arifaj, M.K., D. Argov, L.C.R., J.S.).

Background: Ciliary neurotrophic factor (CNTF), mainly known for its neuroprotective properties, belongs to the IL-6 (interleukin-6) cytokine family. In contrast to IL-6, the effects of CNTF on the vasculature have not been explored. Here, we examined the role of CNTF in AngII (angiotensin II)-induced hypertension.

View Article and Find Full Text PDF

Background: Exosomes sourced from mesenchymal stem cells (MSC-EXOs) have become a promising therapeutic tool for sepsis-induced myocardial dysfunction (SMD). Our previous study demonstrated that Apelin pretreatment enhanced the therapeutic benefit of MSCs in myocardial infarction by improving their paracrine effects. This study aimed to determine whether EXOs sourced from Apelin-pretreated MSCs (Apelin-MSC-EXOs) would have potent cardioprotective effects against SMD and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!